Step |
Hyp |
Ref |
Expression |
1 |
|
lubsn.b |
|- B = ( Base ` K ) |
2 |
|
lubsn.u |
|- U = ( lub ` K ) |
3 |
|
dfsn2 |
|- { X } = { X , X } |
4 |
3
|
fveq2i |
|- ( U ` { X } ) = ( U ` { X , X } ) |
5 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
6 |
|
simpl |
|- ( ( K e. Lat /\ X e. B ) -> K e. Lat ) |
7 |
|
simpr |
|- ( ( K e. Lat /\ X e. B ) -> X e. B ) |
8 |
2 5 6 7 7
|
joinval |
|- ( ( K e. Lat /\ X e. B ) -> ( X ( join ` K ) X ) = ( U ` { X , X } ) ) |
9 |
4 8
|
eqtr4id |
|- ( ( K e. Lat /\ X e. B ) -> ( U ` { X } ) = ( X ( join ` K ) X ) ) |
10 |
1 5
|
latjidm |
|- ( ( K e. Lat /\ X e. B ) -> ( X ( join ` K ) X ) = X ) |
11 |
9 10
|
eqtrd |
|- ( ( K e. Lat /\ X e. B ) -> ( U ` { X } ) = X ) |