Metamath Proof Explorer


Theorem lubss

Description: Subset law for least upper bounds. ( chsupss analog.) (Contributed by NM, 20-Oct-2011)

Ref Expression
Hypotheses lublem.b
|- B = ( Base ` K )
lublem.l
|- .<_ = ( le ` K )
lublem.u
|- U = ( lub ` K )
Assertion lubss
|- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> ( U ` S ) .<_ ( U ` T ) )

Proof

Step Hyp Ref Expression
1 lublem.b
 |-  B = ( Base ` K )
2 lublem.l
 |-  .<_ = ( le ` K )
3 lublem.u
 |-  U = ( lub ` K )
4 simp1
 |-  ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> K e. CLat )
5 sstr2
 |-  ( S C_ T -> ( T C_ B -> S C_ B ) )
6 5 impcom
 |-  ( ( T C_ B /\ S C_ T ) -> S C_ B )
7 6 3adant1
 |-  ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> S C_ B )
8 1 3 clatlubcl
 |-  ( ( K e. CLat /\ T C_ B ) -> ( U ` T ) e. B )
9 8 3adant3
 |-  ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> ( U ` T ) e. B )
10 4 7 9 3jca
 |-  ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> ( K e. CLat /\ S C_ B /\ ( U ` T ) e. B ) )
11 simpl1
 |-  ( ( ( K e. CLat /\ T C_ B /\ S C_ T ) /\ y e. S ) -> K e. CLat )
12 simpl2
 |-  ( ( ( K e. CLat /\ T C_ B /\ S C_ T ) /\ y e. S ) -> T C_ B )
13 ssel2
 |-  ( ( S C_ T /\ y e. S ) -> y e. T )
14 13 3ad2antl3
 |-  ( ( ( K e. CLat /\ T C_ B /\ S C_ T ) /\ y e. S ) -> y e. T )
15 1 2 3 lubub
 |-  ( ( K e. CLat /\ T C_ B /\ y e. T ) -> y .<_ ( U ` T ) )
16 11 12 14 15 syl3anc
 |-  ( ( ( K e. CLat /\ T C_ B /\ S C_ T ) /\ y e. S ) -> y .<_ ( U ` T ) )
17 16 ralrimiva
 |-  ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> A. y e. S y .<_ ( U ` T ) )
18 1 2 3 lubl
 |-  ( ( K e. CLat /\ S C_ B /\ ( U ` T ) e. B ) -> ( A. y e. S y .<_ ( U ` T ) -> ( U ` S ) .<_ ( U ` T ) ) )
19 10 17 18 sylc
 |-  ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> ( U ` S ) .<_ ( U ` T ) )