Metamath Proof Explorer


Theorem luklem1

Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 23-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses luklem1.1
|- ( ph -> ps )
luklem1.2
|- ( ps -> ch )
Assertion luklem1
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 luklem1.1
 |-  ( ph -> ps )
2 luklem1.2
 |-  ( ps -> ch )
3 luk-1
 |-  ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) )
4 1 3 ax-mp
 |-  ( ( ps -> ch ) -> ( ph -> ch ) )
5 2 4 ax-mp
 |-  ( ph -> ch )