| Step |
Hyp |
Ref |
Expression |
| 1 |
|
luk-1 |
|- ( ( ph -> ( ph -> ps ) ) -> ( ( ( ph -> ps ) -> ps ) -> ( ph -> ps ) ) ) |
| 2 |
|
luklem5 |
|- ( -. ( ph -> ps ) -> ( -. ps -> -. ( ph -> ps ) ) ) |
| 3 |
|
luklem2 |
|- ( ( -. ps -> -. ( ph -> ps ) ) -> ( ( ( -. ps -> ps ) -> ps ) -> ( ( ph -> ps ) -> ps ) ) ) |
| 4 |
|
luklem4 |
|- ( ( ( ( -. ps -> ps ) -> ps ) -> ( ( ph -> ps ) -> ps ) ) -> ( ( ph -> ps ) -> ps ) ) |
| 5 |
3 4
|
luklem1 |
|- ( ( -. ps -> -. ( ph -> ps ) ) -> ( ( ph -> ps ) -> ps ) ) |
| 6 |
2 5
|
luklem1 |
|- ( -. ( ph -> ps ) -> ( ( ph -> ps ) -> ps ) ) |
| 7 |
|
luk-1 |
|- ( ( -. ( ph -> ps ) -> ( ( ph -> ps ) -> ps ) ) -> ( ( ( ( ph -> ps ) -> ps ) -> ( ph -> ps ) ) -> ( -. ( ph -> ps ) -> ( ph -> ps ) ) ) ) |
| 8 |
6 7
|
ax-mp |
|- ( ( ( ( ph -> ps ) -> ps ) -> ( ph -> ps ) ) -> ( -. ( ph -> ps ) -> ( ph -> ps ) ) ) |
| 9 |
|
luk-1 |
|- ( ( ( ( ( ph -> ps ) -> ps ) -> ( ph -> ps ) ) -> ( -. ( ph -> ps ) -> ( ph -> ps ) ) ) -> ( ( ( -. ( ph -> ps ) -> ( ph -> ps ) ) -> ( ph -> ps ) ) -> ( ( ( ( ph -> ps ) -> ps ) -> ( ph -> ps ) ) -> ( ph -> ps ) ) ) ) |
| 10 |
8 9
|
ax-mp |
|- ( ( ( -. ( ph -> ps ) -> ( ph -> ps ) ) -> ( ph -> ps ) ) -> ( ( ( ( ph -> ps ) -> ps ) -> ( ph -> ps ) ) -> ( ph -> ps ) ) ) |
| 11 |
|
luklem4 |
|- ( ( ( ( -. ( ph -> ps ) -> ( ph -> ps ) ) -> ( ph -> ps ) ) -> ( ( ( ( ph -> ps ) -> ps ) -> ( ph -> ps ) ) -> ( ph -> ps ) ) ) -> ( ( ( ( ph -> ps ) -> ps ) -> ( ph -> ps ) ) -> ( ph -> ps ) ) ) |
| 12 |
10 11
|
ax-mp |
|- ( ( ( ( ph -> ps ) -> ps ) -> ( ph -> ps ) ) -> ( ph -> ps ) ) |
| 13 |
1 12
|
luklem1 |
|- ( ( ph -> ( ph -> ps ) ) -> ( ph -> ps ) ) |