Step |
Hyp |
Ref |
Expression |
1 |
|
lvecdim.1 |
|- J = ( LBasis ` W ) |
2 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
3 |
|
eqid |
|- ( mrCls ` ( LSubSp ` W ) ) = ( mrCls ` ( LSubSp ` W ) ) |
4 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
5 |
2 3 4
|
lssacsex |
|- ( W e. LVec -> ( ( LSubSp ` W ) e. ( ACS ` ( Base ` W ) ) /\ A. x e. ~P ( Base ` W ) A. y e. ( Base ` W ) A. z e. ( ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { y } ) ) \ ( ( mrCls ` ( LSubSp ` W ) ) ` x ) ) y e. ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { z } ) ) ) ) |
6 |
5
|
3ad2ant1 |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( ( LSubSp ` W ) e. ( ACS ` ( Base ` W ) ) /\ A. x e. ~P ( Base ` W ) A. y e. ( Base ` W ) A. z e. ( ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { y } ) ) \ ( ( mrCls ` ( LSubSp ` W ) ) ` x ) ) y e. ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { z } ) ) ) ) |
7 |
6
|
simpld |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( LSubSp ` W ) e. ( ACS ` ( Base ` W ) ) ) |
8 |
|
eqid |
|- ( mrInd ` ( LSubSp ` W ) ) = ( mrInd ` ( LSubSp ` W ) ) |
9 |
6
|
simprd |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> A. x e. ~P ( Base ` W ) A. y e. ( Base ` W ) A. z e. ( ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { y } ) ) \ ( ( mrCls ` ( LSubSp ` W ) ) ` x ) ) y e. ( ( mrCls ` ( LSubSp ` W ) ) ` ( x u. { z } ) ) ) |
10 |
|
simp2 |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> S e. J ) |
11 |
2 3 4 8 1
|
lbsacsbs |
|- ( W e. LVec -> ( S e. J <-> ( S e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( Base ` W ) ) ) ) |
12 |
11
|
3ad2ant1 |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( S e. J <-> ( S e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( Base ` W ) ) ) ) |
13 |
10 12
|
mpbid |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( S e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( Base ` W ) ) ) |
14 |
13
|
simpld |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> S e. ( mrInd ` ( LSubSp ` W ) ) ) |
15 |
|
simp3 |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> T e. J ) |
16 |
2 3 4 8 1
|
lbsacsbs |
|- ( W e. LVec -> ( T e. J <-> ( T e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` T ) = ( Base ` W ) ) ) ) |
17 |
16
|
3ad2ant1 |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( T e. J <-> ( T e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` T ) = ( Base ` W ) ) ) ) |
18 |
15 17
|
mpbid |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( T e. ( mrInd ` ( LSubSp ` W ) ) /\ ( ( mrCls ` ( LSubSp ` W ) ) ` T ) = ( Base ` W ) ) ) |
19 |
18
|
simpld |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> T e. ( mrInd ` ( LSubSp ` W ) ) ) |
20 |
13
|
simprd |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( Base ` W ) ) |
21 |
18
|
simprd |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( ( mrCls ` ( LSubSp ` W ) ) ` T ) = ( Base ` W ) ) |
22 |
20 21
|
eqtr4d |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> ( ( mrCls ` ( LSubSp ` W ) ) ` S ) = ( ( mrCls ` ( LSubSp ` W ) ) ` T ) ) |
23 |
7 3 8 9 14 19 22
|
acsexdimd |
|- ( ( W e. LVec /\ S e. J /\ T e. J ) -> S ~~ T ) |