Step |
Hyp |
Ref |
Expression |
1 |
|
lvecindp.v |
|- V = ( Base ` W ) |
2 |
|
lvecindp.p |
|- .+ = ( +g ` W ) |
3 |
|
lvecindp.f |
|- F = ( Scalar ` W ) |
4 |
|
lvecindp.k |
|- K = ( Base ` F ) |
5 |
|
lvecindp.t |
|- .x. = ( .s ` W ) |
6 |
|
lvecindp.s |
|- S = ( LSubSp ` W ) |
7 |
|
lvecindp.w |
|- ( ph -> W e. LVec ) |
8 |
|
lvecindp.u |
|- ( ph -> U e. S ) |
9 |
|
lvecindp.x |
|- ( ph -> X e. V ) |
10 |
|
lvecindp.n |
|- ( ph -> -. X e. U ) |
11 |
|
lvecindp.y |
|- ( ph -> Y e. U ) |
12 |
|
lvecindp.z |
|- ( ph -> Z e. U ) |
13 |
|
lvecindp.a |
|- ( ph -> A e. K ) |
14 |
|
lvecindp.b |
|- ( ph -> B e. K ) |
15 |
|
lvecindp.e |
|- ( ph -> ( ( A .x. X ) .+ Y ) = ( ( B .x. X ) .+ Z ) ) |
16 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
17 |
|
eqid |
|- ( Cntz ` W ) = ( Cntz ` W ) |
18 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
19 |
7 18
|
syl |
|- ( ph -> W e. LMod ) |
20 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
21 |
1 20
|
lspsnsubg |
|- ( ( W e. LMod /\ X e. V ) -> ( ( LSpan ` W ) ` { X } ) e. ( SubGrp ` W ) ) |
22 |
19 9 21
|
syl2anc |
|- ( ph -> ( ( LSpan ` W ) ` { X } ) e. ( SubGrp ` W ) ) |
23 |
6
|
lsssssubg |
|- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
24 |
19 23
|
syl |
|- ( ph -> S C_ ( SubGrp ` W ) ) |
25 |
24 8
|
sseldd |
|- ( ph -> U e. ( SubGrp ` W ) ) |
26 |
1 16 20 6 7 8 9 10
|
lspdisj |
|- ( ph -> ( ( ( LSpan ` W ) ` { X } ) i^i U ) = { ( 0g ` W ) } ) |
27 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
28 |
19 27
|
syl |
|- ( ph -> W e. Abel ) |
29 |
17 28 22 25
|
ablcntzd |
|- ( ph -> ( ( LSpan ` W ) ` { X } ) C_ ( ( Cntz ` W ) ` U ) ) |
30 |
1 5 3 4 20 19 13 9
|
lspsneli |
|- ( ph -> ( A .x. X ) e. ( ( LSpan ` W ) ` { X } ) ) |
31 |
1 5 3 4 20 19 14 9
|
lspsneli |
|- ( ph -> ( B .x. X ) e. ( ( LSpan ` W ) ` { X } ) ) |
32 |
2 16 17 22 25 26 29 30 31 11 12 15
|
subgdisj1 |
|- ( ph -> ( A .x. X ) = ( B .x. X ) ) |
33 |
16 6 19 8 10
|
lssvneln0 |
|- ( ph -> X =/= ( 0g ` W ) ) |
34 |
1 5 3 4 16 7 13 14 9 33
|
lvecvscan2 |
|- ( ph -> ( ( A .x. X ) = ( B .x. X ) <-> A = B ) ) |
35 |
32 34
|
mpbid |
|- ( ph -> A = B ) |
36 |
2 16 17 22 25 26 29 30 31 11 12 15
|
subgdisj2 |
|- ( ph -> Y = Z ) |
37 |
35 36
|
jca |
|- ( ph -> ( A = B /\ Y = Z ) ) |