| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvecindp.v |
|- V = ( Base ` W ) |
| 2 |
|
lvecindp.p |
|- .+ = ( +g ` W ) |
| 3 |
|
lvecindp.f |
|- F = ( Scalar ` W ) |
| 4 |
|
lvecindp.k |
|- K = ( Base ` F ) |
| 5 |
|
lvecindp.t |
|- .x. = ( .s ` W ) |
| 6 |
|
lvecindp.s |
|- S = ( LSubSp ` W ) |
| 7 |
|
lvecindp.w |
|- ( ph -> W e. LVec ) |
| 8 |
|
lvecindp.u |
|- ( ph -> U e. S ) |
| 9 |
|
lvecindp.x |
|- ( ph -> X e. V ) |
| 10 |
|
lvecindp.n |
|- ( ph -> -. X e. U ) |
| 11 |
|
lvecindp.y |
|- ( ph -> Y e. U ) |
| 12 |
|
lvecindp.z |
|- ( ph -> Z e. U ) |
| 13 |
|
lvecindp.a |
|- ( ph -> A e. K ) |
| 14 |
|
lvecindp.b |
|- ( ph -> B e. K ) |
| 15 |
|
lvecindp.e |
|- ( ph -> ( ( A .x. X ) .+ Y ) = ( ( B .x. X ) .+ Z ) ) |
| 16 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 17 |
|
eqid |
|- ( Cntz ` W ) = ( Cntz ` W ) |
| 18 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 19 |
7 18
|
syl |
|- ( ph -> W e. LMod ) |
| 20 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
| 21 |
1 20
|
lspsnsubg |
|- ( ( W e. LMod /\ X e. V ) -> ( ( LSpan ` W ) ` { X } ) e. ( SubGrp ` W ) ) |
| 22 |
19 9 21
|
syl2anc |
|- ( ph -> ( ( LSpan ` W ) ` { X } ) e. ( SubGrp ` W ) ) |
| 23 |
6
|
lsssssubg |
|- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
| 24 |
19 23
|
syl |
|- ( ph -> S C_ ( SubGrp ` W ) ) |
| 25 |
24 8
|
sseldd |
|- ( ph -> U e. ( SubGrp ` W ) ) |
| 26 |
1 16 20 6 7 8 9 10
|
lspdisj |
|- ( ph -> ( ( ( LSpan ` W ) ` { X } ) i^i U ) = { ( 0g ` W ) } ) |
| 27 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
| 28 |
19 27
|
syl |
|- ( ph -> W e. Abel ) |
| 29 |
17 28 22 25
|
ablcntzd |
|- ( ph -> ( ( LSpan ` W ) ` { X } ) C_ ( ( Cntz ` W ) ` U ) ) |
| 30 |
1 5 3 4 20 19 13 9
|
ellspsni |
|- ( ph -> ( A .x. X ) e. ( ( LSpan ` W ) ` { X } ) ) |
| 31 |
1 5 3 4 20 19 14 9
|
ellspsni |
|- ( ph -> ( B .x. X ) e. ( ( LSpan ` W ) ` { X } ) ) |
| 32 |
2 16 17 22 25 26 29 30 31 11 12 15
|
subgdisj1 |
|- ( ph -> ( A .x. X ) = ( B .x. X ) ) |
| 33 |
16 6 19 8 10
|
lssvneln0 |
|- ( ph -> X =/= ( 0g ` W ) ) |
| 34 |
1 5 3 4 16 7 13 14 9 33
|
lvecvscan2 |
|- ( ph -> ( ( A .x. X ) = ( B .x. X ) <-> A = B ) ) |
| 35 |
32 34
|
mpbid |
|- ( ph -> A = B ) |
| 36 |
2 16 17 22 25 26 29 30 31 11 12 15
|
subgdisj2 |
|- ( ph -> Y = Z ) |
| 37 |
35 36
|
jca |
|- ( ph -> ( A = B /\ Y = Z ) ) |