Step |
Hyp |
Ref |
Expression |
1 |
|
lvecindp2.v |
|- V = ( Base ` W ) |
2 |
|
lvecindp2.p |
|- .+ = ( +g ` W ) |
3 |
|
lvecindp2.f |
|- F = ( Scalar ` W ) |
4 |
|
lvecindp2.k |
|- K = ( Base ` F ) |
5 |
|
lvecindp2.t |
|- .x. = ( .s ` W ) |
6 |
|
lvecindp2.o |
|- .0. = ( 0g ` W ) |
7 |
|
lvecindp2.n |
|- N = ( LSpan ` W ) |
8 |
|
lvecindp2.w |
|- ( ph -> W e. LVec ) |
9 |
|
lvecindp2.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
10 |
|
lvecindp2.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
11 |
|
lvecindp2.a |
|- ( ph -> A e. K ) |
12 |
|
lvecindp2.b |
|- ( ph -> B e. K ) |
13 |
|
lvecindp2.c |
|- ( ph -> C e. K ) |
14 |
|
lvecindp2.d |
|- ( ph -> D e. K ) |
15 |
|
lvecindp2.q |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
16 |
|
lvecindp2.e |
|- ( ph -> ( ( A .x. X ) .+ ( B .x. Y ) ) = ( ( C .x. X ) .+ ( D .x. Y ) ) ) |
17 |
|
eqid |
|- ( Cntz ` W ) = ( Cntz ` W ) |
18 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
19 |
8 18
|
syl |
|- ( ph -> W e. LMod ) |
20 |
9
|
eldifad |
|- ( ph -> X e. V ) |
21 |
1 7
|
lspsnsubg |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
22 |
19 20 21
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
23 |
10
|
eldifad |
|- ( ph -> Y e. V ) |
24 |
1 7
|
lspsnsubg |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
25 |
19 23 24
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
26 |
1 6 7 8 20 23 15
|
lspdisj2 |
|- ( ph -> ( ( N ` { X } ) i^i ( N ` { Y } ) ) = { .0. } ) |
27 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
28 |
19 27
|
syl |
|- ( ph -> W e. Abel ) |
29 |
17 28 22 25
|
ablcntzd |
|- ( ph -> ( N ` { X } ) C_ ( ( Cntz ` W ) ` ( N ` { Y } ) ) ) |
30 |
1 5 3 4 7 19 11 20
|
lspsneli |
|- ( ph -> ( A .x. X ) e. ( N ` { X } ) ) |
31 |
1 5 3 4 7 19 13 20
|
lspsneli |
|- ( ph -> ( C .x. X ) e. ( N ` { X } ) ) |
32 |
1 5 3 4 7 19 12 23
|
lspsneli |
|- ( ph -> ( B .x. Y ) e. ( N ` { Y } ) ) |
33 |
1 5 3 4 7 19 14 23
|
lspsneli |
|- ( ph -> ( D .x. Y ) e. ( N ` { Y } ) ) |
34 |
2 6 17 22 25 26 29 30 31 32 33
|
subgdisjb |
|- ( ph -> ( ( ( A .x. X ) .+ ( B .x. Y ) ) = ( ( C .x. X ) .+ ( D .x. Y ) ) <-> ( ( A .x. X ) = ( C .x. X ) /\ ( B .x. Y ) = ( D .x. Y ) ) ) ) |
35 |
16 34
|
mpbid |
|- ( ph -> ( ( A .x. X ) = ( C .x. X ) /\ ( B .x. Y ) = ( D .x. Y ) ) ) |
36 |
|
eldifsni |
|- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
37 |
9 36
|
syl |
|- ( ph -> X =/= .0. ) |
38 |
1 5 3 4 6 8 11 13 20 37
|
lvecvscan2 |
|- ( ph -> ( ( A .x. X ) = ( C .x. X ) <-> A = C ) ) |
39 |
|
eldifsni |
|- ( Y e. ( V \ { .0. } ) -> Y =/= .0. ) |
40 |
10 39
|
syl |
|- ( ph -> Y =/= .0. ) |
41 |
1 5 3 4 6 8 12 14 23 40
|
lvecvscan2 |
|- ( ph -> ( ( B .x. Y ) = ( D .x. Y ) <-> B = D ) ) |
42 |
38 41
|
anbi12d |
|- ( ph -> ( ( ( A .x. X ) = ( C .x. X ) /\ ( B .x. Y ) = ( D .x. Y ) ) <-> ( A = C /\ B = D ) ) ) |
43 |
35 42
|
mpbid |
|- ( ph -> ( A = C /\ B = D ) ) |