Step |
Hyp |
Ref |
Expression |
1 |
|
lvecinv.v |
|- V = ( Base ` W ) |
2 |
|
lvecinv.t |
|- .x. = ( .s ` W ) |
3 |
|
lvecinv.f |
|- F = ( Scalar ` W ) |
4 |
|
lvecinv.k |
|- K = ( Base ` F ) |
5 |
|
lvecinv.o |
|- .0. = ( 0g ` F ) |
6 |
|
lvecinv.i |
|- I = ( invr ` F ) |
7 |
|
lvecinv.w |
|- ( ph -> W e. LVec ) |
8 |
|
lvecinv.a |
|- ( ph -> A e. ( K \ { .0. } ) ) |
9 |
|
lvecinv.x |
|- ( ph -> X e. V ) |
10 |
|
lvecinv.y |
|- ( ph -> Y e. V ) |
11 |
|
oveq2 |
|- ( X = ( A .x. Y ) -> ( ( I ` A ) .x. X ) = ( ( I ` A ) .x. ( A .x. Y ) ) ) |
12 |
3
|
lvecdrng |
|- ( W e. LVec -> F e. DivRing ) |
13 |
7 12
|
syl |
|- ( ph -> F e. DivRing ) |
14 |
8
|
eldifad |
|- ( ph -> A e. K ) |
15 |
|
eldifsni |
|- ( A e. ( K \ { .0. } ) -> A =/= .0. ) |
16 |
8 15
|
syl |
|- ( ph -> A =/= .0. ) |
17 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
18 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
19 |
4 5 17 18 6
|
drnginvrl |
|- ( ( F e. DivRing /\ A e. K /\ A =/= .0. ) -> ( ( I ` A ) ( .r ` F ) A ) = ( 1r ` F ) ) |
20 |
13 14 16 19
|
syl3anc |
|- ( ph -> ( ( I ` A ) ( .r ` F ) A ) = ( 1r ` F ) ) |
21 |
20
|
oveq1d |
|- ( ph -> ( ( ( I ` A ) ( .r ` F ) A ) .x. Y ) = ( ( 1r ` F ) .x. Y ) ) |
22 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
23 |
7 22
|
syl |
|- ( ph -> W e. LMod ) |
24 |
4 5 6
|
drnginvrcl |
|- ( ( F e. DivRing /\ A e. K /\ A =/= .0. ) -> ( I ` A ) e. K ) |
25 |
13 14 16 24
|
syl3anc |
|- ( ph -> ( I ` A ) e. K ) |
26 |
1 3 2 4 17
|
lmodvsass |
|- ( ( W e. LMod /\ ( ( I ` A ) e. K /\ A e. K /\ Y e. V ) ) -> ( ( ( I ` A ) ( .r ` F ) A ) .x. Y ) = ( ( I ` A ) .x. ( A .x. Y ) ) ) |
27 |
23 25 14 10 26
|
syl13anc |
|- ( ph -> ( ( ( I ` A ) ( .r ` F ) A ) .x. Y ) = ( ( I ` A ) .x. ( A .x. Y ) ) ) |
28 |
1 3 2 18
|
lmodvs1 |
|- ( ( W e. LMod /\ Y e. V ) -> ( ( 1r ` F ) .x. Y ) = Y ) |
29 |
23 10 28
|
syl2anc |
|- ( ph -> ( ( 1r ` F ) .x. Y ) = Y ) |
30 |
21 27 29
|
3eqtr3d |
|- ( ph -> ( ( I ` A ) .x. ( A .x. Y ) ) = Y ) |
31 |
11 30
|
sylan9eqr |
|- ( ( ph /\ X = ( A .x. Y ) ) -> ( ( I ` A ) .x. X ) = Y ) |
32 |
4 5 17 18 6
|
drnginvrr |
|- ( ( F e. DivRing /\ A e. K /\ A =/= .0. ) -> ( A ( .r ` F ) ( I ` A ) ) = ( 1r ` F ) ) |
33 |
13 14 16 32
|
syl3anc |
|- ( ph -> ( A ( .r ` F ) ( I ` A ) ) = ( 1r ` F ) ) |
34 |
33
|
oveq1d |
|- ( ph -> ( ( A ( .r ` F ) ( I ` A ) ) .x. X ) = ( ( 1r ` F ) .x. X ) ) |
35 |
1 3 2 4 17
|
lmodvsass |
|- ( ( W e. LMod /\ ( A e. K /\ ( I ` A ) e. K /\ X e. V ) ) -> ( ( A ( .r ` F ) ( I ` A ) ) .x. X ) = ( A .x. ( ( I ` A ) .x. X ) ) ) |
36 |
23 14 25 9 35
|
syl13anc |
|- ( ph -> ( ( A ( .r ` F ) ( I ` A ) ) .x. X ) = ( A .x. ( ( I ` A ) .x. X ) ) ) |
37 |
1 3 2 18
|
lmodvs1 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` F ) .x. X ) = X ) |
38 |
23 9 37
|
syl2anc |
|- ( ph -> ( ( 1r ` F ) .x. X ) = X ) |
39 |
34 36 38
|
3eqtr3rd |
|- ( ph -> X = ( A .x. ( ( I ` A ) .x. X ) ) ) |
40 |
|
oveq2 |
|- ( ( ( I ` A ) .x. X ) = Y -> ( A .x. ( ( I ` A ) .x. X ) ) = ( A .x. Y ) ) |
41 |
39 40
|
sylan9eq |
|- ( ( ph /\ ( ( I ` A ) .x. X ) = Y ) -> X = ( A .x. Y ) ) |
42 |
31 41
|
impbida |
|- ( ph -> ( X = ( A .x. Y ) <-> ( ( I ` A ) .x. X ) = Y ) ) |
43 |
|
eqcom |
|- ( ( ( I ` A ) .x. X ) = Y <-> Y = ( ( I ` A ) .x. X ) ) |
44 |
42 43
|
bitrdi |
|- ( ph -> ( X = ( A .x. Y ) <-> Y = ( ( I ` A ) .x. X ) ) ) |