Metamath Proof Explorer


Theorem lvecpropd

Description: If two structures have the same components (properties), one is a left vector space iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015)

Ref Expression
Hypotheses lvecpropd.1
|- ( ph -> B = ( Base ` K ) )
lvecpropd.2
|- ( ph -> B = ( Base ` L ) )
lvecpropd.3
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) )
lvecpropd.4
|- ( ph -> F = ( Scalar ` K ) )
lvecpropd.5
|- ( ph -> F = ( Scalar ` L ) )
lvecpropd.6
|- P = ( Base ` F )
lvecpropd.7
|- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) )
Assertion lvecpropd
|- ( ph -> ( K e. LVec <-> L e. LVec ) )

Proof

Step Hyp Ref Expression
1 lvecpropd.1
 |-  ( ph -> B = ( Base ` K ) )
2 lvecpropd.2
 |-  ( ph -> B = ( Base ` L ) )
3 lvecpropd.3
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) )
4 lvecpropd.4
 |-  ( ph -> F = ( Scalar ` K ) )
5 lvecpropd.5
 |-  ( ph -> F = ( Scalar ` L ) )
6 lvecpropd.6
 |-  P = ( Base ` F )
7 lvecpropd.7
 |-  ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) )
8 1 2 3 4 5 6 7 lmodpropd
 |-  ( ph -> ( K e. LMod <-> L e. LMod ) )
9 4 5 eqtr3d
 |-  ( ph -> ( Scalar ` K ) = ( Scalar ` L ) )
10 9 eleq1d
 |-  ( ph -> ( ( Scalar ` K ) e. DivRing <-> ( Scalar ` L ) e. DivRing ) )
11 8 10 anbi12d
 |-  ( ph -> ( ( K e. LMod /\ ( Scalar ` K ) e. DivRing ) <-> ( L e. LMod /\ ( Scalar ` L ) e. DivRing ) ) )
12 eqid
 |-  ( Scalar ` K ) = ( Scalar ` K )
13 12 islvec
 |-  ( K e. LVec <-> ( K e. LMod /\ ( Scalar ` K ) e. DivRing ) )
14 eqid
 |-  ( Scalar ` L ) = ( Scalar ` L )
15 14 islvec
 |-  ( L e. LVec <-> ( L e. LMod /\ ( Scalar ` L ) e. DivRing ) )
16 11 13 15 3bitr4g
 |-  ( ph -> ( K e. LVec <-> L e. LVec ) )