Step |
Hyp |
Ref |
Expression |
1 |
|
lvecmul0or.v |
|- V = ( Base ` W ) |
2 |
|
lvecmul0or.s |
|- .x. = ( .s ` W ) |
3 |
|
lvecmul0or.f |
|- F = ( Scalar ` W ) |
4 |
|
lvecmul0or.k |
|- K = ( Base ` F ) |
5 |
|
lvecmul0or.o |
|- O = ( 0g ` F ) |
6 |
|
lvecmul0or.z |
|- .0. = ( 0g ` W ) |
7 |
|
lvecmul0or.w |
|- ( ph -> W e. LVec ) |
8 |
|
lvecmul0or.a |
|- ( ph -> A e. K ) |
9 |
|
lvecmul0or.x |
|- ( ph -> X e. V ) |
10 |
|
df-ne |
|- ( A =/= O <-> -. A = O ) |
11 |
|
oveq2 |
|- ( ( A .x. X ) = .0. -> ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) = ( ( ( invr ` F ) ` A ) .x. .0. ) ) |
12 |
11
|
ad2antlr |
|- ( ( ( ph /\ ( A .x. X ) = .0. ) /\ A =/= O ) -> ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) = ( ( ( invr ` F ) ` A ) .x. .0. ) ) |
13 |
7
|
adantr |
|- ( ( ph /\ A =/= O ) -> W e. LVec ) |
14 |
3
|
lvecdrng |
|- ( W e. LVec -> F e. DivRing ) |
15 |
13 14
|
syl |
|- ( ( ph /\ A =/= O ) -> F e. DivRing ) |
16 |
8
|
adantr |
|- ( ( ph /\ A =/= O ) -> A e. K ) |
17 |
|
simpr |
|- ( ( ph /\ A =/= O ) -> A =/= O ) |
18 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
19 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
20 |
|
eqid |
|- ( invr ` F ) = ( invr ` F ) |
21 |
4 5 18 19 20
|
drnginvrl |
|- ( ( F e. DivRing /\ A e. K /\ A =/= O ) -> ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) = ( 1r ` F ) ) |
22 |
15 16 17 21
|
syl3anc |
|- ( ( ph /\ A =/= O ) -> ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) = ( 1r ` F ) ) |
23 |
22
|
oveq1d |
|- ( ( ph /\ A =/= O ) -> ( ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) .x. X ) = ( ( 1r ` F ) .x. X ) ) |
24 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
25 |
7 24
|
syl |
|- ( ph -> W e. LMod ) |
26 |
25
|
adantr |
|- ( ( ph /\ A =/= O ) -> W e. LMod ) |
27 |
4 5 20
|
drnginvrcl |
|- ( ( F e. DivRing /\ A e. K /\ A =/= O ) -> ( ( invr ` F ) ` A ) e. K ) |
28 |
15 16 17 27
|
syl3anc |
|- ( ( ph /\ A =/= O ) -> ( ( invr ` F ) ` A ) e. K ) |
29 |
9
|
adantr |
|- ( ( ph /\ A =/= O ) -> X e. V ) |
30 |
1 3 2 4 18
|
lmodvsass |
|- ( ( W e. LMod /\ ( ( ( invr ` F ) ` A ) e. K /\ A e. K /\ X e. V ) ) -> ( ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) .x. X ) = ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) ) |
31 |
26 28 16 29 30
|
syl13anc |
|- ( ( ph /\ A =/= O ) -> ( ( ( ( invr ` F ) ` A ) ( .r ` F ) A ) .x. X ) = ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) ) |
32 |
1 3 2 19
|
lmodvs1 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` F ) .x. X ) = X ) |
33 |
25 9 32
|
syl2anc |
|- ( ph -> ( ( 1r ` F ) .x. X ) = X ) |
34 |
33
|
adantr |
|- ( ( ph /\ A =/= O ) -> ( ( 1r ` F ) .x. X ) = X ) |
35 |
23 31 34
|
3eqtr3d |
|- ( ( ph /\ A =/= O ) -> ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) = X ) |
36 |
35
|
adantlr |
|- ( ( ( ph /\ ( A .x. X ) = .0. ) /\ A =/= O ) -> ( ( ( invr ` F ) ` A ) .x. ( A .x. X ) ) = X ) |
37 |
25
|
adantr |
|- ( ( ph /\ ( A .x. X ) = .0. ) -> W e. LMod ) |
38 |
37
|
adantr |
|- ( ( ( ph /\ ( A .x. X ) = .0. ) /\ A =/= O ) -> W e. LMod ) |
39 |
28
|
adantlr |
|- ( ( ( ph /\ ( A .x. X ) = .0. ) /\ A =/= O ) -> ( ( invr ` F ) ` A ) e. K ) |
40 |
3 2 4 6
|
lmodvs0 |
|- ( ( W e. LMod /\ ( ( invr ` F ) ` A ) e. K ) -> ( ( ( invr ` F ) ` A ) .x. .0. ) = .0. ) |
41 |
38 39 40
|
syl2anc |
|- ( ( ( ph /\ ( A .x. X ) = .0. ) /\ A =/= O ) -> ( ( ( invr ` F ) ` A ) .x. .0. ) = .0. ) |
42 |
12 36 41
|
3eqtr3d |
|- ( ( ( ph /\ ( A .x. X ) = .0. ) /\ A =/= O ) -> X = .0. ) |
43 |
42
|
ex |
|- ( ( ph /\ ( A .x. X ) = .0. ) -> ( A =/= O -> X = .0. ) ) |
44 |
10 43
|
syl5bir |
|- ( ( ph /\ ( A .x. X ) = .0. ) -> ( -. A = O -> X = .0. ) ) |
45 |
44
|
orrd |
|- ( ( ph /\ ( A .x. X ) = .0. ) -> ( A = O \/ X = .0. ) ) |
46 |
45
|
ex |
|- ( ph -> ( ( A .x. X ) = .0. -> ( A = O \/ X = .0. ) ) ) |
47 |
1 3 2 5 6
|
lmod0vs |
|- ( ( W e. LMod /\ X e. V ) -> ( O .x. X ) = .0. ) |
48 |
25 9 47
|
syl2anc |
|- ( ph -> ( O .x. X ) = .0. ) |
49 |
|
oveq1 |
|- ( A = O -> ( A .x. X ) = ( O .x. X ) ) |
50 |
49
|
eqeq1d |
|- ( A = O -> ( ( A .x. X ) = .0. <-> ( O .x. X ) = .0. ) ) |
51 |
48 50
|
syl5ibrcom |
|- ( ph -> ( A = O -> ( A .x. X ) = .0. ) ) |
52 |
3 2 4 6
|
lmodvs0 |
|- ( ( W e. LMod /\ A e. K ) -> ( A .x. .0. ) = .0. ) |
53 |
25 8 52
|
syl2anc |
|- ( ph -> ( A .x. .0. ) = .0. ) |
54 |
|
oveq2 |
|- ( X = .0. -> ( A .x. X ) = ( A .x. .0. ) ) |
55 |
54
|
eqeq1d |
|- ( X = .0. -> ( ( A .x. X ) = .0. <-> ( A .x. .0. ) = .0. ) ) |
56 |
53 55
|
syl5ibrcom |
|- ( ph -> ( X = .0. -> ( A .x. X ) = .0. ) ) |
57 |
51 56
|
jaod |
|- ( ph -> ( ( A = O \/ X = .0. ) -> ( A .x. X ) = .0. ) ) |
58 |
46 57
|
impbid |
|- ( ph -> ( ( A .x. X ) = .0. <-> ( A = O \/ X = .0. ) ) ) |