Step |
Hyp |
Ref |
Expression |
1 |
|
lvecmulcan.v |
|- V = ( Base ` W ) |
2 |
|
lvecmulcan.s |
|- .x. = ( .s ` W ) |
3 |
|
lvecmulcan.f |
|- F = ( Scalar ` W ) |
4 |
|
lvecmulcan.k |
|- K = ( Base ` F ) |
5 |
|
lvecmulcan.o |
|- .0. = ( 0g ` F ) |
6 |
|
lvecmulcan.w |
|- ( ph -> W e. LVec ) |
7 |
|
lvecmulcan.a |
|- ( ph -> A e. K ) |
8 |
|
lvecmulcan.x |
|- ( ph -> X e. V ) |
9 |
|
lvecmulcan.y |
|- ( ph -> Y e. V ) |
10 |
|
lvecmulcan.n |
|- ( ph -> A =/= .0. ) |
11 |
|
df-ne |
|- ( A =/= .0. <-> -. A = .0. ) |
12 |
|
biorf |
|- ( -. A = .0. -> ( ( X ( -g ` W ) Y ) = ( 0g ` W ) <-> ( A = .0. \/ ( X ( -g ` W ) Y ) = ( 0g ` W ) ) ) ) |
13 |
11 12
|
sylbi |
|- ( A =/= .0. -> ( ( X ( -g ` W ) Y ) = ( 0g ` W ) <-> ( A = .0. \/ ( X ( -g ` W ) Y ) = ( 0g ` W ) ) ) ) |
14 |
10 13
|
syl |
|- ( ph -> ( ( X ( -g ` W ) Y ) = ( 0g ` W ) <-> ( A = .0. \/ ( X ( -g ` W ) Y ) = ( 0g ` W ) ) ) ) |
15 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
16 |
6 15
|
syl |
|- ( ph -> W e. LMod ) |
17 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
18 |
|
eqid |
|- ( -g ` W ) = ( -g ` W ) |
19 |
1 17 18
|
lmodsubeq0 |
|- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( ( X ( -g ` W ) Y ) = ( 0g ` W ) <-> X = Y ) ) |
20 |
16 8 9 19
|
syl3anc |
|- ( ph -> ( ( X ( -g ` W ) Y ) = ( 0g ` W ) <-> X = Y ) ) |
21 |
1 2 3 4 18 16 7 8 9
|
lmodsubdi |
|- ( ph -> ( A .x. ( X ( -g ` W ) Y ) ) = ( ( A .x. X ) ( -g ` W ) ( A .x. Y ) ) ) |
22 |
21
|
eqeq1d |
|- ( ph -> ( ( A .x. ( X ( -g ` W ) Y ) ) = ( 0g ` W ) <-> ( ( A .x. X ) ( -g ` W ) ( A .x. Y ) ) = ( 0g ` W ) ) ) |
23 |
1 18
|
lmodvsubcl |
|- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X ( -g ` W ) Y ) e. V ) |
24 |
16 8 9 23
|
syl3anc |
|- ( ph -> ( X ( -g ` W ) Y ) e. V ) |
25 |
1 2 3 4 5 17 6 7 24
|
lvecvs0or |
|- ( ph -> ( ( A .x. ( X ( -g ` W ) Y ) ) = ( 0g ` W ) <-> ( A = .0. \/ ( X ( -g ` W ) Y ) = ( 0g ` W ) ) ) ) |
26 |
1 3 2 4
|
lmodvscl |
|- ( ( W e. LMod /\ A e. K /\ X e. V ) -> ( A .x. X ) e. V ) |
27 |
16 7 8 26
|
syl3anc |
|- ( ph -> ( A .x. X ) e. V ) |
28 |
1 3 2 4
|
lmodvscl |
|- ( ( W e. LMod /\ A e. K /\ Y e. V ) -> ( A .x. Y ) e. V ) |
29 |
16 7 9 28
|
syl3anc |
|- ( ph -> ( A .x. Y ) e. V ) |
30 |
1 17 18
|
lmodsubeq0 |
|- ( ( W e. LMod /\ ( A .x. X ) e. V /\ ( A .x. Y ) e. V ) -> ( ( ( A .x. X ) ( -g ` W ) ( A .x. Y ) ) = ( 0g ` W ) <-> ( A .x. X ) = ( A .x. Y ) ) ) |
31 |
16 27 29 30
|
syl3anc |
|- ( ph -> ( ( ( A .x. X ) ( -g ` W ) ( A .x. Y ) ) = ( 0g ` W ) <-> ( A .x. X ) = ( A .x. Y ) ) ) |
32 |
22 25 31
|
3bitr3d |
|- ( ph -> ( ( A = .0. \/ ( X ( -g ` W ) Y ) = ( 0g ` W ) ) <-> ( A .x. X ) = ( A .x. Y ) ) ) |
33 |
14 20 32
|
3bitr3rd |
|- ( ph -> ( ( A .x. X ) = ( A .x. Y ) <-> X = Y ) ) |