| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvecmulcan2.v |
|- V = ( Base ` W ) |
| 2 |
|
lvecmulcan2.s |
|- .x. = ( .s ` W ) |
| 3 |
|
lvecmulcan2.f |
|- F = ( Scalar ` W ) |
| 4 |
|
lvecmulcan2.k |
|- K = ( Base ` F ) |
| 5 |
|
lvecmulcan2.o |
|- .0. = ( 0g ` W ) |
| 6 |
|
lvecmulcan2.w |
|- ( ph -> W e. LVec ) |
| 7 |
|
lvecmulcan2.a |
|- ( ph -> A e. K ) |
| 8 |
|
lvecmulcan2.b |
|- ( ph -> B e. K ) |
| 9 |
|
lvecmulcan2.x |
|- ( ph -> X e. V ) |
| 10 |
|
lvecmulcan2.n |
|- ( ph -> X =/= .0. ) |
| 11 |
10
|
neneqd |
|- ( ph -> -. X = .0. ) |
| 12 |
|
biorf |
|- ( -. X = .0. -> ( ( A ( -g ` F ) B ) = ( 0g ` F ) <-> ( X = .0. \/ ( A ( -g ` F ) B ) = ( 0g ` F ) ) ) ) |
| 13 |
|
orcom |
|- ( ( X = .0. \/ ( A ( -g ` F ) B ) = ( 0g ` F ) ) <-> ( ( A ( -g ` F ) B ) = ( 0g ` F ) \/ X = .0. ) ) |
| 14 |
12 13
|
bitrdi |
|- ( -. X = .0. -> ( ( A ( -g ` F ) B ) = ( 0g ` F ) <-> ( ( A ( -g ` F ) B ) = ( 0g ` F ) \/ X = .0. ) ) ) |
| 15 |
11 14
|
syl |
|- ( ph -> ( ( A ( -g ` F ) B ) = ( 0g ` F ) <-> ( ( A ( -g ` F ) B ) = ( 0g ` F ) \/ X = .0. ) ) ) |
| 16 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
| 17 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 18 |
6 17
|
syl |
|- ( ph -> W e. LMod ) |
| 19 |
3
|
lmodfgrp |
|- ( W e. LMod -> F e. Grp ) |
| 20 |
18 19
|
syl |
|- ( ph -> F e. Grp ) |
| 21 |
|
eqid |
|- ( -g ` F ) = ( -g ` F ) |
| 22 |
4 21
|
grpsubcl |
|- ( ( F e. Grp /\ A e. K /\ B e. K ) -> ( A ( -g ` F ) B ) e. K ) |
| 23 |
20 7 8 22
|
syl3anc |
|- ( ph -> ( A ( -g ` F ) B ) e. K ) |
| 24 |
1 2 3 4 16 5 6 23 9
|
lvecvs0or |
|- ( ph -> ( ( ( A ( -g ` F ) B ) .x. X ) = .0. <-> ( ( A ( -g ` F ) B ) = ( 0g ` F ) \/ X = .0. ) ) ) |
| 25 |
|
eqid |
|- ( -g ` W ) = ( -g ` W ) |
| 26 |
1 2 3 4 25 21 18 7 8 9
|
lmodsubdir |
|- ( ph -> ( ( A ( -g ` F ) B ) .x. X ) = ( ( A .x. X ) ( -g ` W ) ( B .x. X ) ) ) |
| 27 |
26
|
eqeq1d |
|- ( ph -> ( ( ( A ( -g ` F ) B ) .x. X ) = .0. <-> ( ( A .x. X ) ( -g ` W ) ( B .x. X ) ) = .0. ) ) |
| 28 |
15 24 27
|
3bitr2rd |
|- ( ph -> ( ( ( A .x. X ) ( -g ` W ) ( B .x. X ) ) = .0. <-> ( A ( -g ` F ) B ) = ( 0g ` F ) ) ) |
| 29 |
1 3 2 4
|
lmodvscl |
|- ( ( W e. LMod /\ A e. K /\ X e. V ) -> ( A .x. X ) e. V ) |
| 30 |
18 7 9 29
|
syl3anc |
|- ( ph -> ( A .x. X ) e. V ) |
| 31 |
1 3 2 4
|
lmodvscl |
|- ( ( W e. LMod /\ B e. K /\ X e. V ) -> ( B .x. X ) e. V ) |
| 32 |
18 8 9 31
|
syl3anc |
|- ( ph -> ( B .x. X ) e. V ) |
| 33 |
1 5 25
|
lmodsubeq0 |
|- ( ( W e. LMod /\ ( A .x. X ) e. V /\ ( B .x. X ) e. V ) -> ( ( ( A .x. X ) ( -g ` W ) ( B .x. X ) ) = .0. <-> ( A .x. X ) = ( B .x. X ) ) ) |
| 34 |
18 30 32 33
|
syl3anc |
|- ( ph -> ( ( ( A .x. X ) ( -g ` W ) ( B .x. X ) ) = .0. <-> ( A .x. X ) = ( B .x. X ) ) ) |
| 35 |
4 16 21
|
grpsubeq0 |
|- ( ( F e. Grp /\ A e. K /\ B e. K ) -> ( ( A ( -g ` F ) B ) = ( 0g ` F ) <-> A = B ) ) |
| 36 |
20 7 8 35
|
syl3anc |
|- ( ph -> ( ( A ( -g ` F ) B ) = ( 0g ` F ) <-> A = B ) ) |
| 37 |
28 34 36
|
3bitr3d |
|- ( ph -> ( ( A .x. X ) = ( B .x. X ) <-> A = B ) ) |