| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvolbase.b |
|- B = ( Base ` K ) |
| 2 |
|
lvolbase.v |
|- V = ( LVols ` K ) |
| 3 |
|
n0i |
|- ( X e. V -> -. V = (/) ) |
| 4 |
2
|
eqeq1i |
|- ( V = (/) <-> ( LVols ` K ) = (/) ) |
| 5 |
3 4
|
sylnib |
|- ( X e. V -> -. ( LVols ` K ) = (/) ) |
| 6 |
|
fvprc |
|- ( -. K e. _V -> ( LVols ` K ) = (/) ) |
| 7 |
5 6
|
nsyl2 |
|- ( X e. V -> K e. _V ) |
| 8 |
|
eqid |
|- ( |
| 9 |
|
eqid |
|- ( LPlanes ` K ) = ( LPlanes ` K ) |
| 10 |
1 8 9 2
|
islvol |
|- ( K e. _V -> ( X e. V <-> ( X e. B /\ E. x e. ( LPlanes ` K ) x ( |
| 11 |
10
|
simprbda |
|- ( ( K e. _V /\ X e. V ) -> X e. B ) |
| 12 |
7 11
|
mpancom |
|- ( X e. V -> X e. B ) |