Step |
Hyp |
Ref |
Expression |
1 |
|
lvolex3.l |
|- .<_ = ( le ` K ) |
2 |
|
lvolex3.a |
|- A = ( Atoms ` K ) |
3 |
|
lvolex3.p |
|- P = ( LPlanes ` K ) |
4 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
5 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
6 |
4 1 5 2 3
|
islpln2 |
|- ( K e. HL -> ( X e. P <-> ( X e. ( Base ` K ) /\ E. r e. A E. s e. A E. t e. A ( r =/= s /\ -. t .<_ ( r ( join ` K ) s ) /\ X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) ) ) |
7 |
|
simp1l |
|- ( ( ( K e. HL /\ ( r e. A /\ s e. A ) ) /\ t e. A /\ ( r =/= s /\ -. t .<_ ( r ( join ` K ) s ) /\ X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) -> K e. HL ) |
8 |
|
simp1rl |
|- ( ( ( K e. HL /\ ( r e. A /\ s e. A ) ) /\ t e. A /\ ( r =/= s /\ -. t .<_ ( r ( join ` K ) s ) /\ X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) -> r e. A ) |
9 |
|
simp1rr |
|- ( ( ( K e. HL /\ ( r e. A /\ s e. A ) ) /\ t e. A /\ ( r =/= s /\ -. t .<_ ( r ( join ` K ) s ) /\ X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) -> s e. A ) |
10 |
|
simp2 |
|- ( ( ( K e. HL /\ ( r e. A /\ s e. A ) ) /\ t e. A /\ ( r =/= s /\ -. t .<_ ( r ( join ` K ) s ) /\ X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) -> t e. A ) |
11 |
5 1 2
|
3dim3 |
|- ( ( K e. HL /\ ( r e. A /\ s e. A /\ t e. A ) ) -> E. q e. A -. q .<_ ( ( r ( join ` K ) s ) ( join ` K ) t ) ) |
12 |
7 8 9 10 11
|
syl13anc |
|- ( ( ( K e. HL /\ ( r e. A /\ s e. A ) ) /\ t e. A /\ ( r =/= s /\ -. t .<_ ( r ( join ` K ) s ) /\ X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) -> E. q e. A -. q .<_ ( ( r ( join ` K ) s ) ( join ` K ) t ) ) |
13 |
|
simp33 |
|- ( ( ( K e. HL /\ ( r e. A /\ s e. A ) ) /\ t e. A /\ ( r =/= s /\ -. t .<_ ( r ( join ` K ) s ) /\ X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) -> X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) |
14 |
|
breq2 |
|- ( X = ( ( r ( join ` K ) s ) ( join ` K ) t ) -> ( q .<_ X <-> q .<_ ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) |
15 |
14
|
notbid |
|- ( X = ( ( r ( join ` K ) s ) ( join ` K ) t ) -> ( -. q .<_ X <-> -. q .<_ ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) |
16 |
15
|
rexbidv |
|- ( X = ( ( r ( join ` K ) s ) ( join ` K ) t ) -> ( E. q e. A -. q .<_ X <-> E. q e. A -. q .<_ ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) |
17 |
13 16
|
syl |
|- ( ( ( K e. HL /\ ( r e. A /\ s e. A ) ) /\ t e. A /\ ( r =/= s /\ -. t .<_ ( r ( join ` K ) s ) /\ X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) -> ( E. q e. A -. q .<_ X <-> E. q e. A -. q .<_ ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) |
18 |
12 17
|
mpbird |
|- ( ( ( K e. HL /\ ( r e. A /\ s e. A ) ) /\ t e. A /\ ( r =/= s /\ -. t .<_ ( r ( join ` K ) s ) /\ X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) -> E. q e. A -. q .<_ X ) |
19 |
18
|
rexlimdv3a |
|- ( ( K e. HL /\ ( r e. A /\ s e. A ) ) -> ( E. t e. A ( r =/= s /\ -. t .<_ ( r ( join ` K ) s ) /\ X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) -> E. q e. A -. q .<_ X ) ) |
20 |
19
|
rexlimdvva |
|- ( K e. HL -> ( E. r e. A E. s e. A E. t e. A ( r =/= s /\ -. t .<_ ( r ( join ` K ) s ) /\ X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) -> E. q e. A -. q .<_ X ) ) |
21 |
20
|
adantld |
|- ( K e. HL -> ( ( X e. ( Base ` K ) /\ E. r e. A E. s e. A E. t e. A ( r =/= s /\ -. t .<_ ( r ( join ` K ) s ) /\ X = ( ( r ( join ` K ) s ) ( join ` K ) t ) ) ) -> E. q e. A -. q .<_ X ) ) |
22 |
6 21
|
sylbid |
|- ( K e. HL -> ( X e. P -> E. q e. A -. q .<_ X ) ) |
23 |
22
|
imp |
|- ( ( K e. HL /\ X e. P ) -> E. q e. A -. q .<_ X ) |