| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lvoli2.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | lvoli2.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | lvoli2.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | lvoli2.v |  |-  V = ( LVols ` K ) | 
						
							| 5 |  | simp12 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. A ) | 
						
							| 6 |  | simp13 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. A ) | 
						
							| 7 |  | simp3 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) | 
						
							| 8 |  | eqidd |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ Q ) .\/ R ) .\/ S ) ) | 
						
							| 9 |  | neeq1 |  |-  ( p = P -> ( p =/= q <-> P =/= q ) ) | 
						
							| 10 |  | oveq1 |  |-  ( p = P -> ( p .\/ q ) = ( P .\/ q ) ) | 
						
							| 11 | 10 | breq2d |  |-  ( p = P -> ( R .<_ ( p .\/ q ) <-> R .<_ ( P .\/ q ) ) ) | 
						
							| 12 | 11 | notbid |  |-  ( p = P -> ( -. R .<_ ( p .\/ q ) <-> -. R .<_ ( P .\/ q ) ) ) | 
						
							| 13 | 10 | oveq1d |  |-  ( p = P -> ( ( p .\/ q ) .\/ R ) = ( ( P .\/ q ) .\/ R ) ) | 
						
							| 14 | 13 | breq2d |  |-  ( p = P -> ( S .<_ ( ( p .\/ q ) .\/ R ) <-> S .<_ ( ( P .\/ q ) .\/ R ) ) ) | 
						
							| 15 | 14 | notbid |  |-  ( p = P -> ( -. S .<_ ( ( p .\/ q ) .\/ R ) <-> -. S .<_ ( ( P .\/ q ) .\/ R ) ) ) | 
						
							| 16 | 9 12 15 | 3anbi123d |  |-  ( p = P -> ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) <-> ( P =/= q /\ -. R .<_ ( P .\/ q ) /\ -. S .<_ ( ( P .\/ q ) .\/ R ) ) ) ) | 
						
							| 17 | 13 | oveq1d |  |-  ( p = P -> ( ( ( p .\/ q ) .\/ R ) .\/ S ) = ( ( ( P .\/ q ) .\/ R ) .\/ S ) ) | 
						
							| 18 | 17 | eqeq2d |  |-  ( p = P -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ q ) .\/ R ) .\/ S ) ) ) | 
						
							| 19 | 16 18 | anbi12d |  |-  ( p = P -> ( ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) <-> ( ( P =/= q /\ -. R .<_ ( P .\/ q ) /\ -. S .<_ ( ( P .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ q ) .\/ R ) .\/ S ) ) ) ) | 
						
							| 20 |  | neeq2 |  |-  ( q = Q -> ( P =/= q <-> P =/= Q ) ) | 
						
							| 21 |  | oveq2 |  |-  ( q = Q -> ( P .\/ q ) = ( P .\/ Q ) ) | 
						
							| 22 | 21 | breq2d |  |-  ( q = Q -> ( R .<_ ( P .\/ q ) <-> R .<_ ( P .\/ Q ) ) ) | 
						
							| 23 | 22 | notbid |  |-  ( q = Q -> ( -. R .<_ ( P .\/ q ) <-> -. R .<_ ( P .\/ Q ) ) ) | 
						
							| 24 | 21 | oveq1d |  |-  ( q = Q -> ( ( P .\/ q ) .\/ R ) = ( ( P .\/ Q ) .\/ R ) ) | 
						
							| 25 | 24 | breq2d |  |-  ( q = Q -> ( S .<_ ( ( P .\/ q ) .\/ R ) <-> S .<_ ( ( P .\/ Q ) .\/ R ) ) ) | 
						
							| 26 | 25 | notbid |  |-  ( q = Q -> ( -. S .<_ ( ( P .\/ q ) .\/ R ) <-> -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) | 
						
							| 27 | 20 23 26 | 3anbi123d |  |-  ( q = Q -> ( ( P =/= q /\ -. R .<_ ( P .\/ q ) /\ -. S .<_ ( ( P .\/ q ) .\/ R ) ) <-> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) ) | 
						
							| 28 | 24 | oveq1d |  |-  ( q = Q -> ( ( ( P .\/ q ) .\/ R ) .\/ S ) = ( ( ( P .\/ Q ) .\/ R ) .\/ S ) ) | 
						
							| 29 | 28 | eqeq2d |  |-  ( q = Q -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ q ) .\/ R ) .\/ S ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ Q ) .\/ R ) .\/ S ) ) ) | 
						
							| 30 | 27 29 | anbi12d |  |-  ( q = Q -> ( ( ( P =/= q /\ -. R .<_ ( P .\/ q ) /\ -. S .<_ ( ( P .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ q ) .\/ R ) .\/ S ) ) <-> ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ Q ) .\/ R ) .\/ S ) ) ) ) | 
						
							| 31 | 19 30 | rspc2ev |  |-  ( ( P e. A /\ Q e. A /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ Q ) .\/ R ) .\/ S ) ) ) -> E. p e. A E. q e. A ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) | 
						
							| 32 | 5 6 7 8 31 | syl112anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> E. p e. A E. q e. A ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) | 
						
							| 33 | 32 | 3exp |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( R e. A /\ S e. A ) -> ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) -> E. p e. A E. q e. A ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) ) ) | 
						
							| 34 |  | simplrl |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) -> R e. A ) | 
						
							| 35 |  | simplrr |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) -> S e. A ) | 
						
							| 36 |  | simpr |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) -> ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) | 
						
							| 37 |  | breq1 |  |-  ( r = R -> ( r .<_ ( p .\/ q ) <-> R .<_ ( p .\/ q ) ) ) | 
						
							| 38 | 37 | notbid |  |-  ( r = R -> ( -. r .<_ ( p .\/ q ) <-> -. R .<_ ( p .\/ q ) ) ) | 
						
							| 39 |  | oveq2 |  |-  ( r = R -> ( ( p .\/ q ) .\/ r ) = ( ( p .\/ q ) .\/ R ) ) | 
						
							| 40 | 39 | breq2d |  |-  ( r = R -> ( s .<_ ( ( p .\/ q ) .\/ r ) <-> s .<_ ( ( p .\/ q ) .\/ R ) ) ) | 
						
							| 41 | 40 | notbid |  |-  ( r = R -> ( -. s .<_ ( ( p .\/ q ) .\/ r ) <-> -. s .<_ ( ( p .\/ q ) .\/ R ) ) ) | 
						
							| 42 | 38 41 | 3anbi23d |  |-  ( r = R -> ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) <-> ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ R ) ) ) ) | 
						
							| 43 | 39 | oveq1d |  |-  ( r = R -> ( ( ( p .\/ q ) .\/ r ) .\/ s ) = ( ( ( p .\/ q ) .\/ R ) .\/ s ) ) | 
						
							| 44 | 43 | eqeq2d |  |-  ( r = R -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ s ) ) ) | 
						
							| 45 | 42 44 | anbi12d |  |-  ( r = R -> ( ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) <-> ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ s ) ) ) ) | 
						
							| 46 |  | breq1 |  |-  ( s = S -> ( s .<_ ( ( p .\/ q ) .\/ R ) <-> S .<_ ( ( p .\/ q ) .\/ R ) ) ) | 
						
							| 47 | 46 | notbid |  |-  ( s = S -> ( -. s .<_ ( ( p .\/ q ) .\/ R ) <-> -. S .<_ ( ( p .\/ q ) .\/ R ) ) ) | 
						
							| 48 | 47 | 3anbi3d |  |-  ( s = S -> ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ R ) ) <-> ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) ) ) | 
						
							| 49 |  | oveq2 |  |-  ( s = S -> ( ( ( p .\/ q ) .\/ R ) .\/ s ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) | 
						
							| 50 | 49 | eqeq2d |  |-  ( s = S -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ s ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) | 
						
							| 51 | 48 50 | anbi12d |  |-  ( s = S -> ( ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ s ) ) <-> ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) ) | 
						
							| 52 | 45 51 | rspc2ev |  |-  ( ( R e. A /\ S e. A /\ ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) -> E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) | 
						
							| 53 | 34 35 36 52 | syl3anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) -> E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) | 
						
							| 54 | 53 | ex |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) -> E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) | 
						
							| 55 | 54 | reximdv |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( E. q e. A ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) -> E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) | 
						
							| 56 | 55 | reximdv |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( E. p e. A E. q e. A ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) -> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) | 
						
							| 57 | 56 | ex |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( R e. A /\ S e. A ) -> ( E. p e. A E. q e. A ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) -> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) ) | 
						
							| 58 | 33 57 | syldd |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( R e. A /\ S e. A ) -> ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) -> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) ) | 
						
							| 59 | 58 | 3imp |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) | 
						
							| 60 |  | simp11 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. HL ) | 
						
							| 61 | 60 | hllatd |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. Lat ) | 
						
							| 62 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 63 | 62 2 3 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 64 | 63 | 3ad2ant1 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 65 |  | simp2l |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. A ) | 
						
							| 66 | 62 3 | atbase |  |-  ( R e. A -> R e. ( Base ` K ) ) | 
						
							| 67 | 65 66 | syl |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. ( Base ` K ) ) | 
						
							| 68 | 62 2 | latjcl |  |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) | 
						
							| 69 | 61 64 67 68 | syl3anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) | 
						
							| 70 |  | simp2r |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. A ) | 
						
							| 71 | 62 3 | atbase |  |-  ( S e. A -> S e. ( Base ` K ) ) | 
						
							| 72 | 70 71 | syl |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. ( Base ` K ) ) | 
						
							| 73 | 62 2 | latjcl |  |-  ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. ( Base ` K ) ) | 
						
							| 74 | 61 69 72 73 | syl3anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. ( Base ` K ) ) | 
						
							| 75 | 62 1 2 3 4 | islvol5 |  |-  ( ( K e. HL /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. ( Base ` K ) ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V <-> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) | 
						
							| 76 | 60 74 75 | syl2anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V <-> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) | 
						
							| 77 | 59 76 | mpbird |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V ) |