| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lvolnleat.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | lvolnleat.a |  |-  A = ( Atoms ` K ) | 
						
							| 3 |  | lvolnleat.v |  |-  V = ( LVols ` K ) | 
						
							| 4 |  | 3simpa |  |-  ( ( K e. HL /\ X e. V /\ P e. A ) -> ( K e. HL /\ X e. V ) ) | 
						
							| 5 |  | simp3 |  |-  ( ( K e. HL /\ X e. V /\ P e. A ) -> P e. A ) | 
						
							| 6 |  | eqid |  |-  ( join ` K ) = ( join ` K ) | 
						
							| 7 | 1 6 2 3 | lvolnle3at |  |-  ( ( ( K e. HL /\ X e. V ) /\ ( P e. A /\ P e. A /\ P e. A ) ) -> -. X .<_ ( ( P ( join ` K ) P ) ( join ` K ) P ) ) | 
						
							| 8 | 4 5 5 5 7 | syl13anc |  |-  ( ( K e. HL /\ X e. V /\ P e. A ) -> -. X .<_ ( ( P ( join ` K ) P ) ( join ` K ) P ) ) | 
						
							| 9 | 6 2 | hlatjidm |  |-  ( ( K e. HL /\ P e. A ) -> ( P ( join ` K ) P ) = P ) | 
						
							| 10 | 9 | 3adant2 |  |-  ( ( K e. HL /\ X e. V /\ P e. A ) -> ( P ( join ` K ) P ) = P ) | 
						
							| 11 | 10 | oveq1d |  |-  ( ( K e. HL /\ X e. V /\ P e. A ) -> ( ( P ( join ` K ) P ) ( join ` K ) P ) = ( P ( join ` K ) P ) ) | 
						
							| 12 | 11 10 | eqtrd |  |-  ( ( K e. HL /\ X e. V /\ P e. A ) -> ( ( P ( join ` K ) P ) ( join ` K ) P ) = P ) | 
						
							| 13 | 12 | breq2d |  |-  ( ( K e. HL /\ X e. V /\ P e. A ) -> ( X .<_ ( ( P ( join ` K ) P ) ( join ` K ) P ) <-> X .<_ P ) ) | 
						
							| 14 | 8 13 | mtbid |  |-  ( ( K e. HL /\ X e. V /\ P e. A ) -> -. X .<_ P ) |