| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvolnlelln.l |
|- .<_ = ( le ` K ) |
| 2 |
|
lvolnlelln.n |
|- N = ( LLines ` K ) |
| 3 |
|
lvolnlelln.v |
|- V = ( LVols ` K ) |
| 4 |
|
simp3 |
|- ( ( K e. HL /\ X e. V /\ Y e. N ) -> Y e. N ) |
| 5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 6 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 7 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 8 |
5 6 7 2
|
islln2 |
|- ( K e. HL -> ( Y e. N <-> ( Y e. ( Base ` K ) /\ E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) ) ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( K e. HL /\ X e. V /\ Y e. N ) -> ( Y e. N <-> ( Y e. ( Base ` K ) /\ E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) ) ) |
| 10 |
4 9
|
mpbid |
|- ( ( K e. HL /\ X e. V /\ Y e. N ) -> ( Y e. ( Base ` K ) /\ E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) ) |
| 11 |
|
simp11 |
|- ( ( ( K e. HL /\ X e. V /\ Y e. N ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) -> K e. HL ) |
| 12 |
|
simp12 |
|- ( ( ( K e. HL /\ X e. V /\ Y e. N ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) -> X e. V ) |
| 13 |
|
simp2l |
|- ( ( ( K e. HL /\ X e. V /\ Y e. N ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) -> p e. ( Atoms ` K ) ) |
| 14 |
|
simp2r |
|- ( ( ( K e. HL /\ X e. V /\ Y e. N ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) -> q e. ( Atoms ` K ) ) |
| 15 |
1 6 7 3
|
lvolnle3at |
|- ( ( ( K e. HL /\ X e. V ) /\ ( p e. ( Atoms ` K ) /\ p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) -> -. X .<_ ( ( p ( join ` K ) p ) ( join ` K ) q ) ) |
| 16 |
11 12 13 13 14 15
|
syl23anc |
|- ( ( ( K e. HL /\ X e. V /\ Y e. N ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) -> -. X .<_ ( ( p ( join ` K ) p ) ( join ` K ) q ) ) |
| 17 |
|
simp3r |
|- ( ( ( K e. HL /\ X e. V /\ Y e. N ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) -> Y = ( p ( join ` K ) q ) ) |
| 18 |
6 7
|
hlatjidm |
|- ( ( K e. HL /\ p e. ( Atoms ` K ) ) -> ( p ( join ` K ) p ) = p ) |
| 19 |
11 13 18
|
syl2anc |
|- ( ( ( K e. HL /\ X e. V /\ Y e. N ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) -> ( p ( join ` K ) p ) = p ) |
| 20 |
19
|
oveq1d |
|- ( ( ( K e. HL /\ X e. V /\ Y e. N ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) -> ( ( p ( join ` K ) p ) ( join ` K ) q ) = ( p ( join ` K ) q ) ) |
| 21 |
17 20
|
eqtr4d |
|- ( ( ( K e. HL /\ X e. V /\ Y e. N ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) -> Y = ( ( p ( join ` K ) p ) ( join ` K ) q ) ) |
| 22 |
21
|
breq2d |
|- ( ( ( K e. HL /\ X e. V /\ Y e. N ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) -> ( X .<_ Y <-> X .<_ ( ( p ( join ` K ) p ) ( join ` K ) q ) ) ) |
| 23 |
16 22
|
mtbird |
|- ( ( ( K e. HL /\ X e. V /\ Y e. N ) /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) /\ ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) -> -. X .<_ Y ) |
| 24 |
23
|
3exp |
|- ( ( K e. HL /\ X e. V /\ Y e. N ) -> ( ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) -> ( ( p =/= q /\ Y = ( p ( join ` K ) q ) ) -> -. X .<_ Y ) ) ) |
| 25 |
24
|
rexlimdvv |
|- ( ( K e. HL /\ X e. V /\ Y e. N ) -> ( E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) ( p =/= q /\ Y = ( p ( join ` K ) q ) ) -> -. X .<_ Y ) ) |
| 26 |
25
|
adantld |
|- ( ( K e. HL /\ X e. V /\ Y e. N ) -> ( ( Y e. ( Base ` K ) /\ E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) ( p =/= q /\ Y = ( p ( join ` K ) q ) ) ) -> -. X .<_ Y ) ) |
| 27 |
10 26
|
mpd |
|- ( ( K e. HL /\ X e. V /\ Y e. N ) -> -. X .<_ Y ) |