Step |
Hyp |
Ref |
Expression |
1 |
|
lvolnlelpln.l |
|- .<_ = ( le ` K ) |
2 |
|
lvolnlelpln.p |
|- P = ( LPlanes ` K ) |
3 |
|
lvolnlelpln.v |
|- V = ( LVols ` K ) |
4 |
|
simp3 |
|- ( ( K e. HL /\ X e. V /\ Y e. P ) -> Y e. P ) |
5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
6 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
7 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
8 |
5 1 6 7 2
|
islpln2 |
|- ( K e. HL -> ( Y e. P <-> ( Y e. ( Base ` K ) /\ E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) ) ) |
9 |
8
|
3ad2ant1 |
|- ( ( K e. HL /\ X e. V /\ Y e. P ) -> ( Y e. P <-> ( Y e. ( Base ` K ) /\ E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) ) ) |
10 |
4 9
|
mpbid |
|- ( ( K e. HL /\ X e. V /\ Y e. P ) -> ( Y e. ( Base ` K ) /\ E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) ) |
11 |
|
simp1l1 |
|- ( ( ( ( K e. HL /\ X e. V /\ Y e. P ) /\ q e. ( Atoms ` K ) ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) /\ ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) -> K e. HL ) |
12 |
|
simp1l2 |
|- ( ( ( ( K e. HL /\ X e. V /\ Y e. P ) /\ q e. ( Atoms ` K ) ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) /\ ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) -> X e. V ) |
13 |
|
simp1r |
|- ( ( ( ( K e. HL /\ X e. V /\ Y e. P ) /\ q e. ( Atoms ` K ) ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) /\ ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) -> q e. ( Atoms ` K ) ) |
14 |
|
simp2l |
|- ( ( ( ( K e. HL /\ X e. V /\ Y e. P ) /\ q e. ( Atoms ` K ) ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) /\ ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) -> r e. ( Atoms ` K ) ) |
15 |
|
simp2r |
|- ( ( ( ( K e. HL /\ X e. V /\ Y e. P ) /\ q e. ( Atoms ` K ) ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) /\ ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) -> s e. ( Atoms ` K ) ) |
16 |
1 6 7 3
|
lvolnle3at |
|- ( ( ( K e. HL /\ X e. V ) /\ ( q e. ( Atoms ` K ) /\ r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) ) -> -. X .<_ ( ( q ( join ` K ) r ) ( join ` K ) s ) ) |
17 |
11 12 13 14 15 16
|
syl23anc |
|- ( ( ( ( K e. HL /\ X e. V /\ Y e. P ) /\ q e. ( Atoms ` K ) ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) /\ ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) -> -. X .<_ ( ( q ( join ` K ) r ) ( join ` K ) s ) ) |
18 |
|
simp33 |
|- ( ( ( ( K e. HL /\ X e. V /\ Y e. P ) /\ q e. ( Atoms ` K ) ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) /\ ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) -> Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) |
19 |
18
|
breq2d |
|- ( ( ( ( K e. HL /\ X e. V /\ Y e. P ) /\ q e. ( Atoms ` K ) ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) /\ ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) -> ( X .<_ Y <-> X .<_ ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) |
20 |
17 19
|
mtbird |
|- ( ( ( ( K e. HL /\ X e. V /\ Y e. P ) /\ q e. ( Atoms ` K ) ) /\ ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) /\ ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) -> -. X .<_ Y ) |
21 |
20
|
3exp |
|- ( ( ( K e. HL /\ X e. V /\ Y e. P ) /\ q e. ( Atoms ` K ) ) -> ( ( r e. ( Atoms ` K ) /\ s e. ( Atoms ` K ) ) -> ( ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) -> -. X .<_ Y ) ) ) |
22 |
21
|
rexlimdvv |
|- ( ( ( K e. HL /\ X e. V /\ Y e. P ) /\ q e. ( Atoms ` K ) ) -> ( E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) -> -. X .<_ Y ) ) |
23 |
22
|
rexlimdva |
|- ( ( K e. HL /\ X e. V /\ Y e. P ) -> ( E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) -> -. X .<_ Y ) ) |
24 |
23
|
adantld |
|- ( ( K e. HL /\ X e. V /\ Y e. P ) -> ( ( Y e. ( Base ` K ) /\ E. q e. ( Atoms ` K ) E. r e. ( Atoms ` K ) E. s e. ( Atoms ` K ) ( q =/= r /\ -. s .<_ ( q ( join ` K ) r ) /\ Y = ( ( q ( join ` K ) r ) ( join ` K ) s ) ) ) -> -. X .<_ Y ) ) |
25 |
10 24
|
mpd |
|- ( ( K e. HL /\ X e. V /\ Y e. P ) -> -. X .<_ Y ) |