| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetdiag.d |  |-  D = ( N maDet R ) | 
						
							| 2 |  | mdetdiag.a |  |-  A = ( N Mat R ) | 
						
							| 3 |  | mdetdiag.b |  |-  B = ( Base ` A ) | 
						
							| 4 |  | eqid |  |-  ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) | 
						
							| 5 |  | eqid |  |-  ( ZRHom ` R ) = ( ZRHom ` R ) | 
						
							| 6 |  | eqid |  |-  ( pmSgn ` N ) = ( pmSgn ` N ) | 
						
							| 7 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 8 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | mdetleib |  |-  ( M e. B -> ( D ` M ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) ) | 
						
							| 10 | 9 | 3ad2ant3 |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( D ` M ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) ) | 
						
							| 11 |  | 2fveq3 |  |-  ( N = { I } -> ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` { I } ) ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( N = { I } /\ I e. V ) -> ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` { I } ) ) ) | 
						
							| 13 | 12 | 3ad2ant2 |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` { I } ) ) ) | 
						
							| 14 |  | simp2r |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> I e. V ) | 
						
							| 15 |  | eqid |  |-  ( SymGrp ` { I } ) = ( SymGrp ` { I } ) | 
						
							| 16 |  | eqid |  |-  ( Base ` ( SymGrp ` { I } ) ) = ( Base ` ( SymGrp ` { I } ) ) | 
						
							| 17 |  | eqid |  |-  { I } = { I } | 
						
							| 18 | 15 16 17 | symg1bas |  |-  ( I e. V -> ( Base ` ( SymGrp ` { I } ) ) = { { <. I , I >. } } ) | 
						
							| 19 | 14 18 | syl |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( SymGrp ` { I } ) ) = { { <. I , I >. } } ) | 
						
							| 20 | 13 19 | eqtrd |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( SymGrp ` N ) ) = { { <. I , I >. } } ) | 
						
							| 21 | 20 | mpteq1d |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) = ( p e. { { <. I , I >. } } |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) | 
						
							| 22 |  | snex |  |-  { <. I , I >. } e. _V | 
						
							| 23 | 22 | a1i |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { <. I , I >. } e. _V ) | 
						
							| 24 |  | ovex |  |-  ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) e. _V | 
						
							| 25 |  | fveq2 |  |-  ( p = { <. I , I >. } -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ) | 
						
							| 26 |  | fveq1 |  |-  ( p = { <. I , I >. } -> ( p ` x ) = ( { <. I , I >. } ` x ) ) | 
						
							| 27 | 26 | oveq1d |  |-  ( p = { <. I , I >. } -> ( ( p ` x ) M x ) = ( ( { <. I , I >. } ` x ) M x ) ) | 
						
							| 28 | 27 | mpteq2dv |  |-  ( p = { <. I , I >. } -> ( x e. N |-> ( ( p ` x ) M x ) ) = ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) | 
						
							| 29 | 28 | oveq2d |  |-  ( p = { <. I , I >. } -> ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) = ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) | 
						
							| 30 | 25 29 | oveq12d |  |-  ( p = { <. I , I >. } -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) ) | 
						
							| 31 | 30 | fmptsng |  |-  ( ( { <. I , I >. } e. _V /\ ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) e. _V ) -> { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } = ( p e. { { <. I , I >. } } |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) | 
						
							| 32 | 31 | eqcomd |  |-  ( ( { <. I , I >. } e. _V /\ ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) e. _V ) -> ( p e. { { <. I , I >. } } |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) = { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } ) | 
						
							| 33 | 23 24 32 | sylancl |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( p e. { { <. I , I >. } } |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) = { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } ) | 
						
							| 34 |  | eqid |  |-  ( SymGrp ` N ) = ( SymGrp ` N ) | 
						
							| 35 |  | eqid |  |-  { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } = { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } | 
						
							| 36 | 34 4 35 6 | psgnfn |  |-  ( pmSgn ` N ) Fn { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } | 
						
							| 37 | 18 | adantl |  |-  ( ( N = { I } /\ I e. V ) -> ( Base ` ( SymGrp ` { I } ) ) = { { <. I , I >. } } ) | 
						
							| 38 | 12 37 | eqtrd |  |-  ( ( N = { I } /\ I e. V ) -> ( Base ` ( SymGrp ` N ) ) = { { <. I , I >. } } ) | 
						
							| 39 | 38 | 3ad2ant2 |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( SymGrp ` N ) ) = { { <. I , I >. } } ) | 
						
							| 40 |  | rabeq |  |-  ( ( Base ` ( SymGrp ` N ) ) = { { <. I , I >. } } -> { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } = { b e. { { <. I , I >. } } | dom ( b \ _I ) e. Fin } ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } = { b e. { { <. I , I >. } } | dom ( b \ _I ) e. Fin } ) | 
						
							| 42 |  | difeq1 |  |-  ( b = { <. I , I >. } -> ( b \ _I ) = ( { <. I , I >. } \ _I ) ) | 
						
							| 43 | 42 | dmeqd |  |-  ( b = { <. I , I >. } -> dom ( b \ _I ) = dom ( { <. I , I >. } \ _I ) ) | 
						
							| 44 | 43 | eleq1d |  |-  ( b = { <. I , I >. } -> ( dom ( b \ _I ) e. Fin <-> dom ( { <. I , I >. } \ _I ) e. Fin ) ) | 
						
							| 45 | 44 | rabsnif |  |-  { b e. { { <. I , I >. } } | dom ( b \ _I ) e. Fin } = if ( dom ( { <. I , I >. } \ _I ) e. Fin , { { <. I , I >. } } , (/) ) | 
						
							| 46 | 45 | a1i |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { b e. { { <. I , I >. } } | dom ( b \ _I ) e. Fin } = if ( dom ( { <. I , I >. } \ _I ) e. Fin , { { <. I , I >. } } , (/) ) ) | 
						
							| 47 |  | restidsing |  |-  ( _I |` { I } ) = ( { I } X. { I } ) | 
						
							| 48 |  | xpsng |  |-  ( ( I e. V /\ I e. V ) -> ( { I } X. { I } ) = { <. I , I >. } ) | 
						
							| 49 | 48 | anidms |  |-  ( I e. V -> ( { I } X. { I } ) = { <. I , I >. } ) | 
						
							| 50 | 47 49 | eqtr2id |  |-  ( I e. V -> { <. I , I >. } = ( _I |` { I } ) ) | 
						
							| 51 |  | fnsng |  |-  ( ( I e. V /\ I e. V ) -> { <. I , I >. } Fn { I } ) | 
						
							| 52 | 51 | anidms |  |-  ( I e. V -> { <. I , I >. } Fn { I } ) | 
						
							| 53 |  | fnnfpeq0 |  |-  ( { <. I , I >. } Fn { I } -> ( dom ( { <. I , I >. } \ _I ) = (/) <-> { <. I , I >. } = ( _I |` { I } ) ) ) | 
						
							| 54 | 52 53 | syl |  |-  ( I e. V -> ( dom ( { <. I , I >. } \ _I ) = (/) <-> { <. I , I >. } = ( _I |` { I } ) ) ) | 
						
							| 55 | 50 54 | mpbird |  |-  ( I e. V -> dom ( { <. I , I >. } \ _I ) = (/) ) | 
						
							| 56 |  | 0fi |  |-  (/) e. Fin | 
						
							| 57 | 55 56 | eqeltrdi |  |-  ( I e. V -> dom ( { <. I , I >. } \ _I ) e. Fin ) | 
						
							| 58 | 57 | adantl |  |-  ( ( N = { I } /\ I e. V ) -> dom ( { <. I , I >. } \ _I ) e. Fin ) | 
						
							| 59 | 58 | 3ad2ant2 |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> dom ( { <. I , I >. } \ _I ) e. Fin ) | 
						
							| 60 | 59 | iftrued |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> if ( dom ( { <. I , I >. } \ _I ) e. Fin , { { <. I , I >. } } , (/) ) = { { <. I , I >. } } ) | 
						
							| 61 | 41 46 60 | 3eqtrrd |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { { <. I , I >. } } = { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } ) | 
						
							| 62 | 61 | fneq2d |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( pmSgn ` N ) Fn { { <. I , I >. } } <-> ( pmSgn ` N ) Fn { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } ) ) | 
						
							| 63 | 36 62 | mpbiri |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( pmSgn ` N ) Fn { { <. I , I >. } } ) | 
						
							| 64 | 22 | snid |  |-  { <. I , I >. } e. { { <. I , I >. } } | 
						
							| 65 |  | fvco2 |  |-  ( ( ( pmSgn ` N ) Fn { { <. I , I >. } } /\ { <. I , I >. } e. { { <. I , I >. } } ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) = ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. I , I >. } ) ) ) | 
						
							| 66 | 63 64 65 | sylancl |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) = ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. I , I >. } ) ) ) | 
						
							| 67 |  | fveq2 |  |-  ( N = { I } -> ( pmSgn ` N ) = ( pmSgn ` { I } ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( N = { I } /\ I e. V ) -> ( pmSgn ` N ) = ( pmSgn ` { I } ) ) | 
						
							| 69 | 68 | 3ad2ant2 |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( pmSgn ` N ) = ( pmSgn ` { I } ) ) | 
						
							| 70 | 69 | fveq1d |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( pmSgn ` N ) ` { <. I , I >. } ) = ( ( pmSgn ` { I } ) ` { <. I , I >. } ) ) | 
						
							| 71 |  | snidg |  |-  ( { <. I , I >. } e. _V -> { <. I , I >. } e. { { <. I , I >. } } ) | 
						
							| 72 | 22 71 | mp1i |  |-  ( I e. V -> { <. I , I >. } e. { { <. I , I >. } } ) | 
						
							| 73 | 72 18 | eleqtrrd |  |-  ( I e. V -> { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) | 
						
							| 74 | 73 | ancli |  |-  ( I e. V -> ( I e. V /\ { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) ) | 
						
							| 75 | 74 | adantl |  |-  ( ( N = { I } /\ I e. V ) -> ( I e. V /\ { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) ) | 
						
							| 76 | 75 | 3ad2ant2 |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I e. V /\ { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) ) | 
						
							| 77 |  | eqid |  |-  ( pmSgn ` { I } ) = ( pmSgn ` { I } ) | 
						
							| 78 | 17 15 16 77 | psgnsn |  |-  ( ( I e. V /\ { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) -> ( ( pmSgn ` { I } ) ` { <. I , I >. } ) = 1 ) | 
						
							| 79 | 76 78 | syl |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( pmSgn ` { I } ) ` { <. I , I >. } ) = 1 ) | 
						
							| 80 | 70 79 | eqtrd |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( pmSgn ` N ) ` { <. I , I >. } ) = 1 ) | 
						
							| 81 | 80 | fveq2d |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. I , I >. } ) ) = ( ( ZRHom ` R ) ` 1 ) ) | 
						
							| 82 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 83 | 82 | 3ad2ant1 |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> R e. Ring ) | 
						
							| 84 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 85 | 5 84 | zrh1 |  |-  ( R e. Ring -> ( ( ZRHom ` R ) ` 1 ) = ( 1r ` R ) ) | 
						
							| 86 | 83 85 | syl |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ZRHom ` R ) ` 1 ) = ( 1r ` R ) ) | 
						
							| 87 | 66 81 86 | 3eqtrd |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) = ( 1r ` R ) ) | 
						
							| 88 |  | simp2l |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> N = { I } ) | 
						
							| 89 | 88 | mpteq1d |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) = ( x e. { I } |-> ( ( { <. I , I >. } ` x ) M x ) ) ) | 
						
							| 90 | 89 | oveq2d |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) = ( ( mulGrp ` R ) gsum ( x e. { I } |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) | 
						
							| 91 | 8 | ringmgp |  |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 92 | 82 91 | syl |  |-  ( R e. CRing -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 93 | 92 | 3ad2ant1 |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 94 |  | snidg |  |-  ( I e. V -> I e. { I } ) | 
						
							| 95 | 94 | adantl |  |-  ( ( N = { I } /\ I e. V ) -> I e. { I } ) | 
						
							| 96 |  | eleq2 |  |-  ( N = { I } -> ( I e. N <-> I e. { I } ) ) | 
						
							| 97 | 96 | adantr |  |-  ( ( N = { I } /\ I e. V ) -> ( I e. N <-> I e. { I } ) ) | 
						
							| 98 | 95 97 | mpbird |  |-  ( ( N = { I } /\ I e. V ) -> I e. N ) | 
						
							| 99 | 3 | eleq2i |  |-  ( M e. B <-> M e. ( Base ` A ) ) | 
						
							| 100 | 99 | biimpi |  |-  ( M e. B -> M e. ( Base ` A ) ) | 
						
							| 101 |  | simpl |  |-  ( ( I e. N /\ M e. ( Base ` A ) ) -> I e. N ) | 
						
							| 102 |  | simpr |  |-  ( ( I e. N /\ M e. ( Base ` A ) ) -> M e. ( Base ` A ) ) | 
						
							| 103 | 101 101 102 | 3jca |  |-  ( ( I e. N /\ M e. ( Base ` A ) ) -> ( I e. N /\ I e. N /\ M e. ( Base ` A ) ) ) | 
						
							| 104 | 98 100 103 | syl2an |  |-  ( ( ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I e. N /\ I e. N /\ M e. ( Base ` A ) ) ) | 
						
							| 105 | 104 | 3adant1 |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I e. N /\ I e. N /\ M e. ( Base ` A ) ) ) | 
						
							| 106 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 107 | 2 106 | matecl |  |-  ( ( I e. N /\ I e. N /\ M e. ( Base ` A ) ) -> ( I M I ) e. ( Base ` R ) ) | 
						
							| 108 | 105 107 | syl |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I M I ) e. ( Base ` R ) ) | 
						
							| 109 | 8 106 | mgpbas |  |-  ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) | 
						
							| 110 | 108 109 | eleqtrdi |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I M I ) e. ( Base ` ( mulGrp ` R ) ) ) | 
						
							| 111 |  | eqid |  |-  ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) | 
						
							| 112 |  | fveq2 |  |-  ( x = I -> ( { <. I , I >. } ` x ) = ( { <. I , I >. } ` I ) ) | 
						
							| 113 |  | eqvisset |  |-  ( x = I -> I e. _V ) | 
						
							| 114 |  | fvsng |  |-  ( ( I e. _V /\ I e. _V ) -> ( { <. I , I >. } ` I ) = I ) | 
						
							| 115 | 113 113 114 | syl2anc |  |-  ( x = I -> ( { <. I , I >. } ` I ) = I ) | 
						
							| 116 | 112 115 | eqtrd |  |-  ( x = I -> ( { <. I , I >. } ` x ) = I ) | 
						
							| 117 |  | id |  |-  ( x = I -> x = I ) | 
						
							| 118 | 116 117 | oveq12d |  |-  ( x = I -> ( ( { <. I , I >. } ` x ) M x ) = ( I M I ) ) | 
						
							| 119 | 111 118 | gsumsn |  |-  ( ( ( mulGrp ` R ) e. Mnd /\ I e. V /\ ( I M I ) e. ( Base ` ( mulGrp ` R ) ) ) -> ( ( mulGrp ` R ) gsum ( x e. { I } |-> ( ( { <. I , I >. } ` x ) M x ) ) ) = ( I M I ) ) | 
						
							| 120 | 93 14 110 119 | syl3anc |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( x e. { I } |-> ( ( { <. I , I >. } ` x ) M x ) ) ) = ( I M I ) ) | 
						
							| 121 | 90 120 | eqtrd |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) = ( I M I ) ) | 
						
							| 122 | 87 121 | oveq12d |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) = ( ( 1r ` R ) ( .r ` R ) ( I M I ) ) ) | 
						
							| 123 | 98 | 3ad2ant2 |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> I e. N ) | 
						
							| 124 | 100 | 3ad2ant3 |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> M e. ( Base ` A ) ) | 
						
							| 125 | 123 123 124 107 | syl3anc |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I M I ) e. ( Base ` R ) ) | 
						
							| 126 | 106 7 84 | ringlidm |  |-  ( ( R e. Ring /\ ( I M I ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( I M I ) ) = ( I M I ) ) | 
						
							| 127 | 83 125 126 | syl2anc |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( 1r ` R ) ( .r ` R ) ( I M I ) ) = ( I M I ) ) | 
						
							| 128 | 122 127 | eqtrd |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) = ( I M I ) ) | 
						
							| 129 | 128 | opeq2d |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. = <. { <. I , I >. } , ( I M I ) >. ) | 
						
							| 130 | 129 | sneqd |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } = { <. { <. I , I >. } , ( I M I ) >. } ) | 
						
							| 131 |  | ovex |  |-  ( I M I ) e. _V | 
						
							| 132 |  | eqidd |  |-  ( y = { <. I , I >. } -> ( I M I ) = ( I M I ) ) | 
						
							| 133 | 132 | fmptsng |  |-  ( ( { <. I , I >. } e. _V /\ ( I M I ) e. _V ) -> { <. { <. I , I >. } , ( I M I ) >. } = ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) | 
						
							| 134 | 23 131 133 | sylancl |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { <. { <. I , I >. } , ( I M I ) >. } = ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) | 
						
							| 135 | 130 134 | eqtrd |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } = ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) | 
						
							| 136 | 21 33 135 | 3eqtrd |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) = ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) | 
						
							| 137 | 136 | oveq2d |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) = ( R gsum ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) ) | 
						
							| 138 |  | ringmnd |  |-  ( R e. Ring -> R e. Mnd ) | 
						
							| 139 | 82 138 | syl |  |-  ( R e. CRing -> R e. Mnd ) | 
						
							| 140 | 139 | 3ad2ant1 |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> R e. Mnd ) | 
						
							| 141 | 106 132 | gsumsn |  |-  ( ( R e. Mnd /\ { <. I , I >. } e. _V /\ ( I M I ) e. ( Base ` R ) ) -> ( R gsum ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) = ( I M I ) ) | 
						
							| 142 | 140 23 125 141 | syl3anc |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( R gsum ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) = ( I M I ) ) | 
						
							| 143 | 10 137 142 | 3eqtrd |  |-  ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( D ` M ) = ( I M I ) ) |