Step |
Hyp |
Ref |
Expression |
1 |
|
mdetdiag.d |
|- D = ( N maDet R ) |
2 |
|
mdetdiag.a |
|- A = ( N Mat R ) |
3 |
|
mdetdiag.b |
|- B = ( Base ` A ) |
4 |
|
eqid |
|- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
5 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
6 |
|
eqid |
|- ( pmSgn ` N ) = ( pmSgn ` N ) |
7 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
8 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
9 |
1 2 3 4 5 6 7 8
|
mdetleib |
|- ( M e. B -> ( D ` M ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) ) |
10 |
9
|
3ad2ant3 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( D ` M ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) ) |
11 |
|
2fveq3 |
|- ( N = { I } -> ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` { I } ) ) ) |
12 |
11
|
adantr |
|- ( ( N = { I } /\ I e. V ) -> ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` { I } ) ) ) |
13 |
12
|
3ad2ant2 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` { I } ) ) ) |
14 |
|
simp2r |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> I e. V ) |
15 |
|
eqid |
|- ( SymGrp ` { I } ) = ( SymGrp ` { I } ) |
16 |
|
eqid |
|- ( Base ` ( SymGrp ` { I } ) ) = ( Base ` ( SymGrp ` { I } ) ) |
17 |
|
eqid |
|- { I } = { I } |
18 |
15 16 17
|
symg1bas |
|- ( I e. V -> ( Base ` ( SymGrp ` { I } ) ) = { { <. I , I >. } } ) |
19 |
14 18
|
syl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( SymGrp ` { I } ) ) = { { <. I , I >. } } ) |
20 |
13 19
|
eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( SymGrp ` N ) ) = { { <. I , I >. } } ) |
21 |
20
|
mpteq1d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) = ( p e. { { <. I , I >. } } |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) |
22 |
|
snex |
|- { <. I , I >. } e. _V |
23 |
22
|
a1i |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { <. I , I >. } e. _V ) |
24 |
|
ovex |
|- ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) e. _V |
25 |
|
fveq2 |
|- ( p = { <. I , I >. } -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ) |
26 |
|
fveq1 |
|- ( p = { <. I , I >. } -> ( p ` x ) = ( { <. I , I >. } ` x ) ) |
27 |
26
|
oveq1d |
|- ( p = { <. I , I >. } -> ( ( p ` x ) M x ) = ( ( { <. I , I >. } ` x ) M x ) ) |
28 |
27
|
mpteq2dv |
|- ( p = { <. I , I >. } -> ( x e. N |-> ( ( p ` x ) M x ) ) = ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) |
29 |
28
|
oveq2d |
|- ( p = { <. I , I >. } -> ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) = ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) |
30 |
25 29
|
oveq12d |
|- ( p = { <. I , I >. } -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) ) |
31 |
30
|
fmptsng |
|- ( ( { <. I , I >. } e. _V /\ ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) e. _V ) -> { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } = ( p e. { { <. I , I >. } } |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) |
32 |
31
|
eqcomd |
|- ( ( { <. I , I >. } e. _V /\ ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) e. _V ) -> ( p e. { { <. I , I >. } } |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) = { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } ) |
33 |
23 24 32
|
sylancl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( p e. { { <. I , I >. } } |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) = { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } ) |
34 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
35 |
|
eqid |
|- { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } = { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } |
36 |
34 4 35 6
|
psgnfn |
|- ( pmSgn ` N ) Fn { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } |
37 |
18
|
adantl |
|- ( ( N = { I } /\ I e. V ) -> ( Base ` ( SymGrp ` { I } ) ) = { { <. I , I >. } } ) |
38 |
12 37
|
eqtrd |
|- ( ( N = { I } /\ I e. V ) -> ( Base ` ( SymGrp ` N ) ) = { { <. I , I >. } } ) |
39 |
38
|
3ad2ant2 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( SymGrp ` N ) ) = { { <. I , I >. } } ) |
40 |
|
rabeq |
|- ( ( Base ` ( SymGrp ` N ) ) = { { <. I , I >. } } -> { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } = { b e. { { <. I , I >. } } | dom ( b \ _I ) e. Fin } ) |
41 |
39 40
|
syl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } = { b e. { { <. I , I >. } } | dom ( b \ _I ) e. Fin } ) |
42 |
|
difeq1 |
|- ( b = { <. I , I >. } -> ( b \ _I ) = ( { <. I , I >. } \ _I ) ) |
43 |
42
|
dmeqd |
|- ( b = { <. I , I >. } -> dom ( b \ _I ) = dom ( { <. I , I >. } \ _I ) ) |
44 |
43
|
eleq1d |
|- ( b = { <. I , I >. } -> ( dom ( b \ _I ) e. Fin <-> dom ( { <. I , I >. } \ _I ) e. Fin ) ) |
45 |
44
|
rabsnif |
|- { b e. { { <. I , I >. } } | dom ( b \ _I ) e. Fin } = if ( dom ( { <. I , I >. } \ _I ) e. Fin , { { <. I , I >. } } , (/) ) |
46 |
45
|
a1i |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { b e. { { <. I , I >. } } | dom ( b \ _I ) e. Fin } = if ( dom ( { <. I , I >. } \ _I ) e. Fin , { { <. I , I >. } } , (/) ) ) |
47 |
|
restidsing |
|- ( _I |` { I } ) = ( { I } X. { I } ) |
48 |
|
xpsng |
|- ( ( I e. V /\ I e. V ) -> ( { I } X. { I } ) = { <. I , I >. } ) |
49 |
48
|
anidms |
|- ( I e. V -> ( { I } X. { I } ) = { <. I , I >. } ) |
50 |
47 49
|
eqtr2id |
|- ( I e. V -> { <. I , I >. } = ( _I |` { I } ) ) |
51 |
|
fnsng |
|- ( ( I e. V /\ I e. V ) -> { <. I , I >. } Fn { I } ) |
52 |
51
|
anidms |
|- ( I e. V -> { <. I , I >. } Fn { I } ) |
53 |
|
fnnfpeq0 |
|- ( { <. I , I >. } Fn { I } -> ( dom ( { <. I , I >. } \ _I ) = (/) <-> { <. I , I >. } = ( _I |` { I } ) ) ) |
54 |
52 53
|
syl |
|- ( I e. V -> ( dom ( { <. I , I >. } \ _I ) = (/) <-> { <. I , I >. } = ( _I |` { I } ) ) ) |
55 |
50 54
|
mpbird |
|- ( I e. V -> dom ( { <. I , I >. } \ _I ) = (/) ) |
56 |
|
0fin |
|- (/) e. Fin |
57 |
55 56
|
eqeltrdi |
|- ( I e. V -> dom ( { <. I , I >. } \ _I ) e. Fin ) |
58 |
57
|
adantl |
|- ( ( N = { I } /\ I e. V ) -> dom ( { <. I , I >. } \ _I ) e. Fin ) |
59 |
58
|
3ad2ant2 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> dom ( { <. I , I >. } \ _I ) e. Fin ) |
60 |
59
|
iftrued |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> if ( dom ( { <. I , I >. } \ _I ) e. Fin , { { <. I , I >. } } , (/) ) = { { <. I , I >. } } ) |
61 |
41 46 60
|
3eqtrrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { { <. I , I >. } } = { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } ) |
62 |
61
|
fneq2d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( pmSgn ` N ) Fn { { <. I , I >. } } <-> ( pmSgn ` N ) Fn { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } ) ) |
63 |
36 62
|
mpbiri |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( pmSgn ` N ) Fn { { <. I , I >. } } ) |
64 |
22
|
snid |
|- { <. I , I >. } e. { { <. I , I >. } } |
65 |
|
fvco2 |
|- ( ( ( pmSgn ` N ) Fn { { <. I , I >. } } /\ { <. I , I >. } e. { { <. I , I >. } } ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) = ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. I , I >. } ) ) ) |
66 |
63 64 65
|
sylancl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) = ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. I , I >. } ) ) ) |
67 |
|
fveq2 |
|- ( N = { I } -> ( pmSgn ` N ) = ( pmSgn ` { I } ) ) |
68 |
67
|
adantr |
|- ( ( N = { I } /\ I e. V ) -> ( pmSgn ` N ) = ( pmSgn ` { I } ) ) |
69 |
68
|
3ad2ant2 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( pmSgn ` N ) = ( pmSgn ` { I } ) ) |
70 |
69
|
fveq1d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( pmSgn ` N ) ` { <. I , I >. } ) = ( ( pmSgn ` { I } ) ` { <. I , I >. } ) ) |
71 |
|
snidg |
|- ( { <. I , I >. } e. _V -> { <. I , I >. } e. { { <. I , I >. } } ) |
72 |
22 71
|
mp1i |
|- ( I e. V -> { <. I , I >. } e. { { <. I , I >. } } ) |
73 |
72 18
|
eleqtrrd |
|- ( I e. V -> { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) |
74 |
73
|
ancli |
|- ( I e. V -> ( I e. V /\ { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) ) |
75 |
74
|
adantl |
|- ( ( N = { I } /\ I e. V ) -> ( I e. V /\ { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) ) |
76 |
75
|
3ad2ant2 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I e. V /\ { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) ) |
77 |
|
eqid |
|- ( pmSgn ` { I } ) = ( pmSgn ` { I } ) |
78 |
17 15 16 77
|
psgnsn |
|- ( ( I e. V /\ { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) -> ( ( pmSgn ` { I } ) ` { <. I , I >. } ) = 1 ) |
79 |
76 78
|
syl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( pmSgn ` { I } ) ` { <. I , I >. } ) = 1 ) |
80 |
70 79
|
eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( pmSgn ` N ) ` { <. I , I >. } ) = 1 ) |
81 |
80
|
fveq2d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. I , I >. } ) ) = ( ( ZRHom ` R ) ` 1 ) ) |
82 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
83 |
82
|
3ad2ant1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> R e. Ring ) |
84 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
85 |
5 84
|
zrh1 |
|- ( R e. Ring -> ( ( ZRHom ` R ) ` 1 ) = ( 1r ` R ) ) |
86 |
83 85
|
syl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ZRHom ` R ) ` 1 ) = ( 1r ` R ) ) |
87 |
66 81 86
|
3eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) = ( 1r ` R ) ) |
88 |
|
simp2l |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> N = { I } ) |
89 |
88
|
mpteq1d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) = ( x e. { I } |-> ( ( { <. I , I >. } ` x ) M x ) ) ) |
90 |
89
|
oveq2d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) = ( ( mulGrp ` R ) gsum ( x e. { I } |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) |
91 |
8
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
92 |
82 91
|
syl |
|- ( R e. CRing -> ( mulGrp ` R ) e. Mnd ) |
93 |
92
|
3ad2ant1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( mulGrp ` R ) e. Mnd ) |
94 |
|
snidg |
|- ( I e. V -> I e. { I } ) |
95 |
94
|
adantl |
|- ( ( N = { I } /\ I e. V ) -> I e. { I } ) |
96 |
|
eleq2 |
|- ( N = { I } -> ( I e. N <-> I e. { I } ) ) |
97 |
96
|
adantr |
|- ( ( N = { I } /\ I e. V ) -> ( I e. N <-> I e. { I } ) ) |
98 |
95 97
|
mpbird |
|- ( ( N = { I } /\ I e. V ) -> I e. N ) |
99 |
3
|
eleq2i |
|- ( M e. B <-> M e. ( Base ` A ) ) |
100 |
99
|
biimpi |
|- ( M e. B -> M e. ( Base ` A ) ) |
101 |
|
simpl |
|- ( ( I e. N /\ M e. ( Base ` A ) ) -> I e. N ) |
102 |
|
simpr |
|- ( ( I e. N /\ M e. ( Base ` A ) ) -> M e. ( Base ` A ) ) |
103 |
101 101 102
|
3jca |
|- ( ( I e. N /\ M e. ( Base ` A ) ) -> ( I e. N /\ I e. N /\ M e. ( Base ` A ) ) ) |
104 |
98 100 103
|
syl2an |
|- ( ( ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I e. N /\ I e. N /\ M e. ( Base ` A ) ) ) |
105 |
104
|
3adant1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I e. N /\ I e. N /\ M e. ( Base ` A ) ) ) |
106 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
107 |
2 106
|
matecl |
|- ( ( I e. N /\ I e. N /\ M e. ( Base ` A ) ) -> ( I M I ) e. ( Base ` R ) ) |
108 |
105 107
|
syl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I M I ) e. ( Base ` R ) ) |
109 |
8 106
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
110 |
108 109
|
eleqtrdi |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I M I ) e. ( Base ` ( mulGrp ` R ) ) ) |
111 |
|
eqid |
|- ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) |
112 |
|
fveq2 |
|- ( x = I -> ( { <. I , I >. } ` x ) = ( { <. I , I >. } ` I ) ) |
113 |
|
eqvisset |
|- ( x = I -> I e. _V ) |
114 |
|
fvsng |
|- ( ( I e. _V /\ I e. _V ) -> ( { <. I , I >. } ` I ) = I ) |
115 |
113 113 114
|
syl2anc |
|- ( x = I -> ( { <. I , I >. } ` I ) = I ) |
116 |
112 115
|
eqtrd |
|- ( x = I -> ( { <. I , I >. } ` x ) = I ) |
117 |
|
id |
|- ( x = I -> x = I ) |
118 |
116 117
|
oveq12d |
|- ( x = I -> ( ( { <. I , I >. } ` x ) M x ) = ( I M I ) ) |
119 |
111 118
|
gsumsn |
|- ( ( ( mulGrp ` R ) e. Mnd /\ I e. V /\ ( I M I ) e. ( Base ` ( mulGrp ` R ) ) ) -> ( ( mulGrp ` R ) gsum ( x e. { I } |-> ( ( { <. I , I >. } ` x ) M x ) ) ) = ( I M I ) ) |
120 |
93 14 110 119
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( x e. { I } |-> ( ( { <. I , I >. } ` x ) M x ) ) ) = ( I M I ) ) |
121 |
90 120
|
eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) = ( I M I ) ) |
122 |
87 121
|
oveq12d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) = ( ( 1r ` R ) ( .r ` R ) ( I M I ) ) ) |
123 |
98
|
3ad2ant2 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> I e. N ) |
124 |
100
|
3ad2ant3 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> M e. ( Base ` A ) ) |
125 |
123 123 124 107
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I M I ) e. ( Base ` R ) ) |
126 |
106 7 84
|
ringlidm |
|- ( ( R e. Ring /\ ( I M I ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( I M I ) ) = ( I M I ) ) |
127 |
83 125 126
|
syl2anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( 1r ` R ) ( .r ` R ) ( I M I ) ) = ( I M I ) ) |
128 |
122 127
|
eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) = ( I M I ) ) |
129 |
128
|
opeq2d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. = <. { <. I , I >. } , ( I M I ) >. ) |
130 |
129
|
sneqd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } = { <. { <. I , I >. } , ( I M I ) >. } ) |
131 |
|
ovex |
|- ( I M I ) e. _V |
132 |
|
eqidd |
|- ( y = { <. I , I >. } -> ( I M I ) = ( I M I ) ) |
133 |
132
|
fmptsng |
|- ( ( { <. I , I >. } e. _V /\ ( I M I ) e. _V ) -> { <. { <. I , I >. } , ( I M I ) >. } = ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) |
134 |
23 131 133
|
sylancl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { <. { <. I , I >. } , ( I M I ) >. } = ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) |
135 |
130 134
|
eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } = ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) |
136 |
21 33 135
|
3eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) = ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) |
137 |
136
|
oveq2d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) = ( R gsum ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) ) |
138 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
139 |
82 138
|
syl |
|- ( R e. CRing -> R e. Mnd ) |
140 |
139
|
3ad2ant1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> R e. Mnd ) |
141 |
106 132
|
gsumsn |
|- ( ( R e. Mnd /\ { <. I , I >. } e. _V /\ ( I M I ) e. ( Base ` R ) ) -> ( R gsum ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) = ( I M I ) ) |
142 |
140 23 125 141
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( R gsum ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) = ( I M I ) ) |
143 |
10 137 142
|
3eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( D ` M ) = ( I M I ) ) |