Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1ne0 |
|- 1 =/= 0 |
2 |
1
|
neii |
|- -. 1 = 0 |
3 |
|
eqeq1 |
|- ( 1 = ( A mod P ) -> ( 1 = 0 <-> ( A mod P ) = 0 ) ) |
4 |
3
|
eqcoms |
|- ( ( A mod P ) = 1 -> ( 1 = 0 <-> ( A mod P ) = 0 ) ) |
5 |
2 4
|
mtbii |
|- ( ( A mod P ) = 1 -> -. ( A mod P ) = 0 ) |
6 |
5
|
a1i |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( ( A mod P ) = 1 -> -. ( A mod P ) = 0 ) ) |
7 |
|
modprm1div |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( ( A mod P ) = 1 <-> P || ( A - 1 ) ) ) |
8 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
9 |
|
dvdsval3 |
|- ( ( P e. NN /\ A e. ZZ ) -> ( P || A <-> ( A mod P ) = 0 ) ) |
10 |
8 9
|
sylan |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( P || A <-> ( A mod P ) = 0 ) ) |
11 |
10
|
bicomd |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( ( A mod P ) = 0 <-> P || A ) ) |
12 |
11
|
notbid |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( -. ( A mod P ) = 0 <-> -. P || A ) ) |
13 |
6 7 12
|
3imtr3d |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A - 1 ) -> -. P || A ) ) |