| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  |-  2 e. ZZ | 
						
							| 2 |  | divides |  |-  ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 || N <-> E. n e. ZZ ( n x. 2 ) = N ) ) | 
						
							| 3 | 1 2 | mpan |  |-  ( N e. ZZ -> ( 2 || N <-> E. n e. ZZ ( n x. 2 ) = N ) ) | 
						
							| 4 |  | oveq2 |  |-  ( N = ( n x. 2 ) -> ( -u 1 ^ N ) = ( -u 1 ^ ( n x. 2 ) ) ) | 
						
							| 5 | 4 | eqcoms |  |-  ( ( n x. 2 ) = N -> ( -u 1 ^ N ) = ( -u 1 ^ ( n x. 2 ) ) ) | 
						
							| 6 |  | zcn |  |-  ( n e. ZZ -> n e. CC ) | 
						
							| 7 |  | 2cnd |  |-  ( n e. ZZ -> 2 e. CC ) | 
						
							| 8 | 6 7 | mulcomd |  |-  ( n e. ZZ -> ( n x. 2 ) = ( 2 x. n ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( n e. ZZ -> ( -u 1 ^ ( n x. 2 ) ) = ( -u 1 ^ ( 2 x. n ) ) ) | 
						
							| 10 |  | m1expeven |  |-  ( n e. ZZ -> ( -u 1 ^ ( 2 x. n ) ) = 1 ) | 
						
							| 11 | 9 10 | eqtrd |  |-  ( n e. ZZ -> ( -u 1 ^ ( n x. 2 ) ) = 1 ) | 
						
							| 12 | 5 11 | sylan9eqr |  |-  ( ( n e. ZZ /\ ( n x. 2 ) = N ) -> ( -u 1 ^ N ) = 1 ) | 
						
							| 13 | 12 | rexlimiva |  |-  ( E. n e. ZZ ( n x. 2 ) = N -> ( -u 1 ^ N ) = 1 ) | 
						
							| 14 | 3 13 | biimtrdi |  |-  ( N e. ZZ -> ( 2 || N -> ( -u 1 ^ N ) = 1 ) ) | 
						
							| 15 | 14 | impcom |  |-  ( ( 2 || N /\ N e. ZZ ) -> ( -u 1 ^ N ) = 1 ) | 
						
							| 16 |  | simpl |  |-  ( ( 2 || N /\ N e. ZZ ) -> 2 || N ) | 
						
							| 17 | 15 16 | 2thd |  |-  ( ( 2 || N /\ N e. ZZ ) -> ( ( -u 1 ^ N ) = 1 <-> 2 || N ) ) | 
						
							| 18 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 19 |  | eqcom |  |-  ( -u 1 = 1 <-> 1 = -u 1 ) | 
						
							| 20 |  | ax-1cn |  |-  1 e. CC | 
						
							| 21 | 20 | eqnegi |  |-  ( 1 = -u 1 <-> 1 = 0 ) | 
						
							| 22 | 19 21 | bitri |  |-  ( -u 1 = 1 <-> 1 = 0 ) | 
						
							| 23 | 18 22 | nemtbir |  |-  -. -u 1 = 1 | 
						
							| 24 |  | odd2np1 |  |-  ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 25 |  | oveq2 |  |-  ( N = ( ( 2 x. n ) + 1 ) -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 26 | 25 | eqcoms |  |-  ( ( ( 2 x. n ) + 1 ) = N -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 27 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 28 | 27 | a1i |  |-  ( n e. ZZ -> -u 1 e. CC ) | 
						
							| 29 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 30 | 29 | a1i |  |-  ( n e. ZZ -> -u 1 =/= 0 ) | 
						
							| 31 | 1 | a1i |  |-  ( n e. ZZ -> 2 e. ZZ ) | 
						
							| 32 |  | id |  |-  ( n e. ZZ -> n e. ZZ ) | 
						
							| 33 | 31 32 | zmulcld |  |-  ( n e. ZZ -> ( 2 x. n ) e. ZZ ) | 
						
							| 34 | 28 30 33 | expp1zd |  |-  ( n e. ZZ -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) ) | 
						
							| 35 | 10 | oveq1d |  |-  ( n e. ZZ -> ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) = ( 1 x. -u 1 ) ) | 
						
							| 36 | 27 | mullidi |  |-  ( 1 x. -u 1 ) = -u 1 | 
						
							| 37 | 35 36 | eqtrdi |  |-  ( n e. ZZ -> ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) = -u 1 ) | 
						
							| 38 | 34 37 | eqtrd |  |-  ( n e. ZZ -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = -u 1 ) | 
						
							| 39 | 26 38 | sylan9eqr |  |-  ( ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) -> ( -u 1 ^ N ) = -u 1 ) | 
						
							| 40 | 39 | rexlimiva |  |-  ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( -u 1 ^ N ) = -u 1 ) | 
						
							| 41 | 24 40 | biimtrdi |  |-  ( N e. ZZ -> ( -. 2 || N -> ( -u 1 ^ N ) = -u 1 ) ) | 
						
							| 42 | 41 | impcom |  |-  ( ( -. 2 || N /\ N e. ZZ ) -> ( -u 1 ^ N ) = -u 1 ) | 
						
							| 43 | 42 | eqeq1d |  |-  ( ( -. 2 || N /\ N e. ZZ ) -> ( ( -u 1 ^ N ) = 1 <-> -u 1 = 1 ) ) | 
						
							| 44 | 23 43 | mtbiri |  |-  ( ( -. 2 || N /\ N e. ZZ ) -> -. ( -u 1 ^ N ) = 1 ) | 
						
							| 45 |  | simpl |  |-  ( ( -. 2 || N /\ N e. ZZ ) -> -. 2 || N ) | 
						
							| 46 | 44 45 | 2falsed |  |-  ( ( -. 2 || N /\ N e. ZZ ) -> ( ( -u 1 ^ N ) = 1 <-> 2 || N ) ) | 
						
							| 47 | 17 46 | pm2.61ian |  |-  ( N e. ZZ -> ( ( -u 1 ^ N ) = 1 <-> 2 || N ) ) |