| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m1expcl |
|- ( X e. ZZ -> ( -u 1 ^ X ) e. ZZ ) |
| 2 |
1
|
zcnd |
|- ( X e. ZZ -> ( -u 1 ^ X ) e. CC ) |
| 3 |
2
|
adantr |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ X ) e. CC ) |
| 4 |
|
m1expcl |
|- ( Y e. ZZ -> ( -u 1 ^ Y ) e. ZZ ) |
| 5 |
4
|
zcnd |
|- ( Y e. ZZ -> ( -u 1 ^ Y ) e. CC ) |
| 6 |
5
|
adantl |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ Y ) e. CC ) |
| 7 |
|
neg1cn |
|- -u 1 e. CC |
| 8 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 9 |
|
expne0i |
|- ( ( -u 1 e. CC /\ -u 1 =/= 0 /\ Y e. ZZ ) -> ( -u 1 ^ Y ) =/= 0 ) |
| 10 |
7 8 9
|
mp3an12 |
|- ( Y e. ZZ -> ( -u 1 ^ Y ) =/= 0 ) |
| 11 |
10
|
adantl |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ Y ) =/= 0 ) |
| 12 |
3 6 11
|
divrecd |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( ( -u 1 ^ X ) / ( -u 1 ^ Y ) ) = ( ( -u 1 ^ X ) x. ( 1 / ( -u 1 ^ Y ) ) ) ) |
| 13 |
|
m1expcl2 |
|- ( Y e. ZZ -> ( -u 1 ^ Y ) e. { -u 1 , 1 } ) |
| 14 |
|
elpri |
|- ( ( -u 1 ^ Y ) e. { -u 1 , 1 } -> ( ( -u 1 ^ Y ) = -u 1 \/ ( -u 1 ^ Y ) = 1 ) ) |
| 15 |
|
ax-1cn |
|- 1 e. CC |
| 16 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 17 |
|
divneg2 |
|- ( ( 1 e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> -u ( 1 / 1 ) = ( 1 / -u 1 ) ) |
| 18 |
15 15 16 17
|
mp3an |
|- -u ( 1 / 1 ) = ( 1 / -u 1 ) |
| 19 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 20 |
19
|
negeqi |
|- -u ( 1 / 1 ) = -u 1 |
| 21 |
18 20
|
eqtr3i |
|- ( 1 / -u 1 ) = -u 1 |
| 22 |
|
oveq2 |
|- ( ( -u 1 ^ Y ) = -u 1 -> ( 1 / ( -u 1 ^ Y ) ) = ( 1 / -u 1 ) ) |
| 23 |
|
id |
|- ( ( -u 1 ^ Y ) = -u 1 -> ( -u 1 ^ Y ) = -u 1 ) |
| 24 |
21 22 23
|
3eqtr4a |
|- ( ( -u 1 ^ Y ) = -u 1 -> ( 1 / ( -u 1 ^ Y ) ) = ( -u 1 ^ Y ) ) |
| 25 |
|
oveq2 |
|- ( ( -u 1 ^ Y ) = 1 -> ( 1 / ( -u 1 ^ Y ) ) = ( 1 / 1 ) ) |
| 26 |
|
id |
|- ( ( -u 1 ^ Y ) = 1 -> ( -u 1 ^ Y ) = 1 ) |
| 27 |
19 25 26
|
3eqtr4a |
|- ( ( -u 1 ^ Y ) = 1 -> ( 1 / ( -u 1 ^ Y ) ) = ( -u 1 ^ Y ) ) |
| 28 |
24 27
|
jaoi |
|- ( ( ( -u 1 ^ Y ) = -u 1 \/ ( -u 1 ^ Y ) = 1 ) -> ( 1 / ( -u 1 ^ Y ) ) = ( -u 1 ^ Y ) ) |
| 29 |
13 14 28
|
3syl |
|- ( Y e. ZZ -> ( 1 / ( -u 1 ^ Y ) ) = ( -u 1 ^ Y ) ) |
| 30 |
29
|
adantl |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( 1 / ( -u 1 ^ Y ) ) = ( -u 1 ^ Y ) ) |
| 31 |
30
|
oveq2d |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( ( -u 1 ^ X ) x. ( 1 / ( -u 1 ^ Y ) ) ) = ( ( -u 1 ^ X ) x. ( -u 1 ^ Y ) ) ) |
| 32 |
12 31
|
eqtrd |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( ( -u 1 ^ X ) / ( -u 1 ^ Y ) ) = ( ( -u 1 ^ X ) x. ( -u 1 ^ Y ) ) ) |
| 33 |
|
expsub |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( -u 1 ^ ( X - Y ) ) = ( ( -u 1 ^ X ) / ( -u 1 ^ Y ) ) ) |
| 34 |
7 8 33
|
mpanl12 |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ ( X - Y ) ) = ( ( -u 1 ^ X ) / ( -u 1 ^ Y ) ) ) |
| 35 |
|
expaddz |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( X e. ZZ /\ Y e. ZZ ) ) -> ( -u 1 ^ ( X + Y ) ) = ( ( -u 1 ^ X ) x. ( -u 1 ^ Y ) ) ) |
| 36 |
7 8 35
|
mpanl12 |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ ( X + Y ) ) = ( ( -u 1 ^ X ) x. ( -u 1 ^ Y ) ) ) |
| 37 |
32 34 36
|
3eqtr4d |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( -u 1 ^ ( X - Y ) ) = ( -u 1 ^ ( X + Y ) ) ) |