Description: Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | m1expcl | |- ( N e. ZZ -> ( -u 1 ^ N ) e. ZZ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1z | |- -u 1 e. ZZ |
|
2 | 1z | |- 1 e. ZZ |
|
3 | prssi | |- ( ( -u 1 e. ZZ /\ 1 e. ZZ ) -> { -u 1 , 1 } C_ ZZ ) |
|
4 | 1 2 3 | mp2an | |- { -u 1 , 1 } C_ ZZ |
5 | m1expcl2 | |- ( N e. ZZ -> ( -u 1 ^ N ) e. { -u 1 , 1 } ) |
|
6 | 4 5 | sselid | |- ( N e. ZZ -> ( -u 1 ^ N ) e. ZZ ) |