Metamath Proof Explorer


Theorem m1expe

Description: Exponentiation of -1 by an even power. Variant of m1expeven . (Contributed by AV, 25-Jun-2021)

Ref Expression
Assertion m1expe
|- ( 2 || N -> ( -u 1 ^ N ) = 1 )

Proof

Step Hyp Ref Expression
1 even2n
 |-  ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N )
2 oveq2
 |-  ( N = ( 2 x. n ) -> ( -u 1 ^ N ) = ( -u 1 ^ ( 2 x. n ) ) )
3 2 eqcoms
 |-  ( ( 2 x. n ) = N -> ( -u 1 ^ N ) = ( -u 1 ^ ( 2 x. n ) ) )
4 m1expeven
 |-  ( n e. ZZ -> ( -u 1 ^ ( 2 x. n ) ) = 1 )
5 3 4 sylan9eqr
 |-  ( ( n e. ZZ /\ ( 2 x. n ) = N ) -> ( -u 1 ^ N ) = 1 )
6 5 rexlimiva
 |-  ( E. n e. ZZ ( 2 x. n ) = N -> ( -u 1 ^ N ) = 1 )
7 1 6 sylbi
 |-  ( 2 || N -> ( -u 1 ^ N ) = 1 )