Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
|- ( n = N -> ( n = ( 2 x. i ) <-> N = ( 2 x. i ) ) ) |
2 |
1
|
rexbidv |
|- ( n = N -> ( E. i e. ZZ n = ( 2 x. i ) <-> E. i e. ZZ N = ( 2 x. i ) ) ) |
3 |
|
dfeven4 |
|- Even = { n e. ZZ | E. i e. ZZ n = ( 2 x. i ) } |
4 |
2 3
|
elrab2 |
|- ( N e. Even <-> ( N e. ZZ /\ E. i e. ZZ N = ( 2 x. i ) ) ) |
5 |
|
oveq2 |
|- ( N = ( 2 x. i ) -> ( -u 1 ^ N ) = ( -u 1 ^ ( 2 x. i ) ) ) |
6 |
|
neg1cn |
|- -u 1 e. CC |
7 |
6
|
a1i |
|- ( i e. ZZ -> -u 1 e. CC ) |
8 |
|
neg1ne0 |
|- -u 1 =/= 0 |
9 |
8
|
a1i |
|- ( i e. ZZ -> -u 1 =/= 0 ) |
10 |
|
2z |
|- 2 e. ZZ |
11 |
10
|
a1i |
|- ( i e. ZZ -> 2 e. ZZ ) |
12 |
|
id |
|- ( i e. ZZ -> i e. ZZ ) |
13 |
|
expmulz |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ i e. ZZ ) ) -> ( -u 1 ^ ( 2 x. i ) ) = ( ( -u 1 ^ 2 ) ^ i ) ) |
14 |
7 9 11 12 13
|
syl22anc |
|- ( i e. ZZ -> ( -u 1 ^ ( 2 x. i ) ) = ( ( -u 1 ^ 2 ) ^ i ) ) |
15 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
16 |
15
|
oveq1i |
|- ( ( -u 1 ^ 2 ) ^ i ) = ( 1 ^ i ) |
17 |
|
1exp |
|- ( i e. ZZ -> ( 1 ^ i ) = 1 ) |
18 |
16 17
|
syl5eq |
|- ( i e. ZZ -> ( ( -u 1 ^ 2 ) ^ i ) = 1 ) |
19 |
14 18
|
eqtrd |
|- ( i e. ZZ -> ( -u 1 ^ ( 2 x. i ) ) = 1 ) |
20 |
19
|
adantl |
|- ( ( N e. ZZ /\ i e. ZZ ) -> ( -u 1 ^ ( 2 x. i ) ) = 1 ) |
21 |
5 20
|
sylan9eqr |
|- ( ( ( N e. ZZ /\ i e. ZZ ) /\ N = ( 2 x. i ) ) -> ( -u 1 ^ N ) = 1 ) |
22 |
21
|
rexlimdva2 |
|- ( N e. ZZ -> ( E. i e. ZZ N = ( 2 x. i ) -> ( -u 1 ^ N ) = 1 ) ) |
23 |
22
|
imp |
|- ( ( N e. ZZ /\ E. i e. ZZ N = ( 2 x. i ) ) -> ( -u 1 ^ N ) = 1 ) |
24 |
4 23
|
sylbi |
|- ( N e. Even -> ( -u 1 ^ N ) = 1 ) |