| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odd2np1 |  |-  ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 2 |  | oveq2 |  |-  ( N = ( ( 2 x. n ) + 1 ) -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 3 | 2 | eqcoms |  |-  ( ( ( 2 x. n ) + 1 ) = N -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 4 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 5 | 4 | a1i |  |-  ( n e. ZZ -> -u 1 e. CC ) | 
						
							| 6 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 7 | 6 | a1i |  |-  ( n e. ZZ -> -u 1 =/= 0 ) | 
						
							| 8 |  | 2z |  |-  2 e. ZZ | 
						
							| 9 | 8 | a1i |  |-  ( n e. ZZ -> 2 e. ZZ ) | 
						
							| 10 |  | id |  |-  ( n e. ZZ -> n e. ZZ ) | 
						
							| 11 | 9 10 | zmulcld |  |-  ( n e. ZZ -> ( 2 x. n ) e. ZZ ) | 
						
							| 12 | 5 7 11 | expp1zd |  |-  ( n e. ZZ -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) ) | 
						
							| 13 |  | m1expeven |  |-  ( n e. ZZ -> ( -u 1 ^ ( 2 x. n ) ) = 1 ) | 
						
							| 14 | 13 | oveq1d |  |-  ( n e. ZZ -> ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) = ( 1 x. -u 1 ) ) | 
						
							| 15 | 4 | mullidi |  |-  ( 1 x. -u 1 ) = -u 1 | 
						
							| 16 | 14 15 | eqtrdi |  |-  ( n e. ZZ -> ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) = -u 1 ) | 
						
							| 17 | 12 16 | eqtrd |  |-  ( n e. ZZ -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = -u 1 ) | 
						
							| 18 | 17 | adantl |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = -u 1 ) | 
						
							| 19 | 3 18 | sylan9eqr |  |-  ( ( ( N e. ZZ /\ n e. ZZ ) /\ ( ( 2 x. n ) + 1 ) = N ) -> ( -u 1 ^ N ) = -u 1 ) | 
						
							| 20 | 19 | rexlimdva2 |  |-  ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( -u 1 ^ N ) = -u 1 ) ) | 
						
							| 21 | 1 20 | sylbid |  |-  ( N e. ZZ -> ( -. 2 || N -> ( -u 1 ^ N ) = -u 1 ) ) | 
						
							| 22 | 21 | imp |  |-  ( ( N e. ZZ /\ -. 2 || N ) -> ( -u 1 ^ N ) = -u 1 ) |