Step |
Hyp |
Ref |
Expression |
1 |
|
odd2np1 |
|- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
2 |
|
oveq2 |
|- ( N = ( ( 2 x. n ) + 1 ) -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) ) |
3 |
2
|
eqcoms |
|- ( ( ( 2 x. n ) + 1 ) = N -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) ) |
4 |
|
neg1cn |
|- -u 1 e. CC |
5 |
4
|
a1i |
|- ( n e. ZZ -> -u 1 e. CC ) |
6 |
|
neg1ne0 |
|- -u 1 =/= 0 |
7 |
6
|
a1i |
|- ( n e. ZZ -> -u 1 =/= 0 ) |
8 |
|
2z |
|- 2 e. ZZ |
9 |
8
|
a1i |
|- ( n e. ZZ -> 2 e. ZZ ) |
10 |
|
id |
|- ( n e. ZZ -> n e. ZZ ) |
11 |
9 10
|
zmulcld |
|- ( n e. ZZ -> ( 2 x. n ) e. ZZ ) |
12 |
5 7 11
|
expp1zd |
|- ( n e. ZZ -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) ) |
13 |
|
m1expeven |
|- ( n e. ZZ -> ( -u 1 ^ ( 2 x. n ) ) = 1 ) |
14 |
13
|
oveq1d |
|- ( n e. ZZ -> ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) = ( 1 x. -u 1 ) ) |
15 |
4
|
mulid2i |
|- ( 1 x. -u 1 ) = -u 1 |
16 |
14 15
|
eqtrdi |
|- ( n e. ZZ -> ( ( -u 1 ^ ( 2 x. n ) ) x. -u 1 ) = -u 1 ) |
17 |
12 16
|
eqtrd |
|- ( n e. ZZ -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = -u 1 ) |
18 |
17
|
adantl |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( -u 1 ^ ( ( 2 x. n ) + 1 ) ) = -u 1 ) |
19 |
3 18
|
sylan9eqr |
|- ( ( ( N e. ZZ /\ n e. ZZ ) /\ ( ( 2 x. n ) + 1 ) = N ) -> ( -u 1 ^ N ) = -u 1 ) |
20 |
19
|
rexlimdva2 |
|- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( -u 1 ^ N ) = -u 1 ) ) |
21 |
1 20
|
sylbid |
|- ( N e. ZZ -> ( -. 2 || N -> ( -u 1 ^ N ) = -u 1 ) ) |
22 |
21
|
imp |
|- ( ( N e. ZZ /\ -. 2 || N ) -> ( -u 1 ^ N ) = -u 1 ) |