Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
|- ( N e. Odd -> N e. ZZ ) |
2 |
1
|
zcnd |
|- ( N e. Odd -> N e. CC ) |
3 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
4 |
3
|
eqcomd |
|- ( N e. CC -> N = ( ( N - 1 ) + 1 ) ) |
5 |
2 4
|
syl |
|- ( N e. Odd -> N = ( ( N - 1 ) + 1 ) ) |
6 |
5
|
oveq2d |
|- ( N e. Odd -> ( -u 1 ^ N ) = ( -u 1 ^ ( ( N - 1 ) + 1 ) ) ) |
7 |
|
neg1cn |
|- -u 1 e. CC |
8 |
7
|
a1i |
|- ( N e. Odd -> -u 1 e. CC ) |
9 |
|
neg1ne0 |
|- -u 1 =/= 0 |
10 |
9
|
a1i |
|- ( N e. Odd -> -u 1 =/= 0 ) |
11 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
12 |
1 11
|
syl |
|- ( N e. Odd -> ( N - 1 ) e. ZZ ) |
13 |
8 10 12
|
expp1zd |
|- ( N e. Odd -> ( -u 1 ^ ( ( N - 1 ) + 1 ) ) = ( ( -u 1 ^ ( N - 1 ) ) x. -u 1 ) ) |
14 |
|
oddm1eveni |
|- ( N e. Odd -> ( N - 1 ) e. Even ) |
15 |
|
m1expevenALTV |
|- ( ( N - 1 ) e. Even -> ( -u 1 ^ ( N - 1 ) ) = 1 ) |
16 |
14 15
|
syl |
|- ( N e. Odd -> ( -u 1 ^ ( N - 1 ) ) = 1 ) |
17 |
16
|
oveq1d |
|- ( N e. Odd -> ( ( -u 1 ^ ( N - 1 ) ) x. -u 1 ) = ( 1 x. -u 1 ) ) |
18 |
8
|
mulid2d |
|- ( N e. Odd -> ( 1 x. -u 1 ) = -u 1 ) |
19 |
17 18
|
eqtrd |
|- ( N e. Odd -> ( ( -u 1 ^ ( N - 1 ) ) x. -u 1 ) = -u 1 ) |
20 |
6 13 19
|
3eqtrd |
|- ( N e. Odd -> ( -u 1 ^ N ) = -u 1 ) |