Step |
Hyp |
Ref |
Expression |
1 |
|
neg1z |
|- -u 1 e. ZZ |
2 |
|
oddprm |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) |
3 |
2
|
nnnn0d |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN0 ) |
4 |
|
zexpcl |
|- ( ( -u 1 e. ZZ /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( -u 1 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
5 |
1 3 4
|
sylancr |
|- ( P e. ( Prime \ { 2 } ) -> ( -u 1 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
6 |
5
|
peano2zd |
|- ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. ZZ ) |
7 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
8 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
9 |
7 8
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. NN ) |
10 |
6 9
|
zmodcld |
|- ( P e. ( Prime \ { 2 } ) -> ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. NN0 ) |
11 |
10
|
nn0cnd |
|- ( P e. ( Prime \ { 2 } ) -> ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. CC ) |
12 |
|
1cnd |
|- ( P e. ( Prime \ { 2 } ) -> 1 e. CC ) |
13 |
11 12 12
|
subaddd |
|- ( P e. ( Prime \ { 2 } ) -> ( ( ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = 1 <-> ( 1 + 1 ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) ) |
14 |
|
2re |
|- 2 e. RR |
15 |
14
|
a1i |
|- ( P e. ( Prime \ { 2 } ) -> 2 e. RR ) |
16 |
9
|
nnrpd |
|- ( P e. ( Prime \ { 2 } ) -> P e. RR+ ) |
17 |
|
0le2 |
|- 0 <_ 2 |
18 |
17
|
a1i |
|- ( P e. ( Prime \ { 2 } ) -> 0 <_ 2 ) |
19 |
|
oddprmgt2 |
|- ( P e. ( Prime \ { 2 } ) -> 2 < P ) |
20 |
|
modid |
|- ( ( ( 2 e. RR /\ P e. RR+ ) /\ ( 0 <_ 2 /\ 2 < P ) ) -> ( 2 mod P ) = 2 ) |
21 |
15 16 18 19 20
|
syl22anc |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 mod P ) = 2 ) |
22 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
23 |
21 22
|
eqtrdi |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 mod P ) = ( 1 + 1 ) ) |
24 |
23
|
eqeq1d |
|- ( P e. ( Prime \ { 2 } ) -> ( ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) <-> ( 1 + 1 ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) ) |
25 |
|
eldifsni |
|- ( P e. ( Prime \ { 2 } ) -> P =/= 2 ) |
26 |
25
|
neneqd |
|- ( P e. ( Prime \ { 2 } ) -> -. P = 2 ) |
27 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
28 |
7 27
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 2 ) ) |
29 |
|
2prm |
|- 2 e. Prime |
30 |
|
dvdsprm |
|- ( ( P e. ( ZZ>= ` 2 ) /\ 2 e. Prime ) -> ( P || 2 <-> P = 2 ) ) |
31 |
28 29 30
|
sylancl |
|- ( P e. ( Prime \ { 2 } ) -> ( P || 2 <-> P = 2 ) ) |
32 |
26 31
|
mtbird |
|- ( P e. ( Prime \ { 2 } ) -> -. P || 2 ) |
33 |
32
|
adantr |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> -. P || 2 ) |
34 |
|
1cnd |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> 1 e. CC ) |
35 |
2
|
adantr |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( ( P - 1 ) / 2 ) e. NN ) |
36 |
|
simpr |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> -. 2 || ( ( P - 1 ) / 2 ) ) |
37 |
|
oexpneg |
|- ( ( 1 e. CC /\ ( ( P - 1 ) / 2 ) e. NN /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( -u 1 ^ ( ( P - 1 ) / 2 ) ) = -u ( 1 ^ ( ( P - 1 ) / 2 ) ) ) |
38 |
34 35 36 37
|
syl3anc |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( -u 1 ^ ( ( P - 1 ) / 2 ) ) = -u ( 1 ^ ( ( P - 1 ) / 2 ) ) ) |
39 |
35
|
nnzd |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( ( P - 1 ) / 2 ) e. ZZ ) |
40 |
|
1exp |
|- ( ( ( P - 1 ) / 2 ) e. ZZ -> ( 1 ^ ( ( P - 1 ) / 2 ) ) = 1 ) |
41 |
39 40
|
syl |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( 1 ^ ( ( P - 1 ) / 2 ) ) = 1 ) |
42 |
41
|
negeqd |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> -u ( 1 ^ ( ( P - 1 ) / 2 ) ) = -u 1 ) |
43 |
38 42
|
eqtrd |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( -u 1 ^ ( ( P - 1 ) / 2 ) ) = -u 1 ) |
44 |
43
|
oveq1d |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) = ( -u 1 + 1 ) ) |
45 |
|
ax-1cn |
|- 1 e. CC |
46 |
|
neg1cn |
|- -u 1 e. CC |
47 |
|
1pneg1e0 |
|- ( 1 + -u 1 ) = 0 |
48 |
45 46 47
|
addcomli |
|- ( -u 1 + 1 ) = 0 |
49 |
44 48
|
eqtrdi |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) = 0 ) |
50 |
49
|
oveq2d |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) = ( 2 - 0 ) ) |
51 |
|
2cn |
|- 2 e. CC |
52 |
51
|
subid1i |
|- ( 2 - 0 ) = 2 |
53 |
50 52
|
eqtrdi |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) = 2 ) |
54 |
53
|
breq2d |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( P || ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) <-> P || 2 ) ) |
55 |
33 54
|
mtbird |
|- ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> -. P || ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) ) |
56 |
55
|
ex |
|- ( P e. ( Prime \ { 2 } ) -> ( -. 2 || ( ( P - 1 ) / 2 ) -> -. P || ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) ) ) |
57 |
56
|
con4d |
|- ( P e. ( Prime \ { 2 } ) -> ( P || ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) -> 2 || ( ( P - 1 ) / 2 ) ) ) |
58 |
|
2z |
|- 2 e. ZZ |
59 |
58
|
a1i |
|- ( P e. ( Prime \ { 2 } ) -> 2 e. ZZ ) |
60 |
|
moddvds |
|- ( ( P e. NN /\ 2 e. ZZ /\ ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. ZZ ) -> ( ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) <-> P || ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) ) ) |
61 |
9 59 6 60
|
syl3anc |
|- ( P e. ( Prime \ { 2 } ) -> ( ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) <-> P || ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) ) ) |
62 |
|
4z |
|- 4 e. ZZ |
63 |
|
4ne0 |
|- 4 =/= 0 |
64 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
65 |
9 64
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( P - 1 ) e. NN0 ) |
66 |
65
|
nn0zd |
|- ( P e. ( Prime \ { 2 } ) -> ( P - 1 ) e. ZZ ) |
67 |
|
dvdsval2 |
|- ( ( 4 e. ZZ /\ 4 =/= 0 /\ ( P - 1 ) e. ZZ ) -> ( 4 || ( P - 1 ) <-> ( ( P - 1 ) / 4 ) e. ZZ ) ) |
68 |
62 63 66 67
|
mp3an12i |
|- ( P e. ( Prime \ { 2 } ) -> ( 4 || ( P - 1 ) <-> ( ( P - 1 ) / 4 ) e. ZZ ) ) |
69 |
65
|
nn0cnd |
|- ( P e. ( Prime \ { 2 } ) -> ( P - 1 ) e. CC ) |
70 |
51
|
a1i |
|- ( P e. ( Prime \ { 2 } ) -> 2 e. CC ) |
71 |
|
2ne0 |
|- 2 =/= 0 |
72 |
71
|
a1i |
|- ( P e. ( Prime \ { 2 } ) -> 2 =/= 0 ) |
73 |
69 70 70 72 72
|
divdiv1d |
|- ( P e. ( Prime \ { 2 } ) -> ( ( ( P - 1 ) / 2 ) / 2 ) = ( ( P - 1 ) / ( 2 x. 2 ) ) ) |
74 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
75 |
74
|
oveq2i |
|- ( ( P - 1 ) / ( 2 x. 2 ) ) = ( ( P - 1 ) / 4 ) |
76 |
73 75
|
eqtrdi |
|- ( P e. ( Prime \ { 2 } ) -> ( ( ( P - 1 ) / 2 ) / 2 ) = ( ( P - 1 ) / 4 ) ) |
77 |
76
|
eleq1d |
|- ( P e. ( Prime \ { 2 } ) -> ( ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ <-> ( ( P - 1 ) / 4 ) e. ZZ ) ) |
78 |
68 77
|
bitr4d |
|- ( P e. ( Prime \ { 2 } ) -> ( 4 || ( P - 1 ) <-> ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ ) ) |
79 |
2
|
nnzd |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. ZZ ) |
80 |
|
dvdsval2 |
|- ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( ( P - 1 ) / 2 ) e. ZZ ) -> ( 2 || ( ( P - 1 ) / 2 ) <-> ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ ) ) |
81 |
58 71 79 80
|
mp3an12i |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 || ( ( P - 1 ) / 2 ) <-> ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ ) ) |
82 |
78 81
|
bitr4d |
|- ( P e. ( Prime \ { 2 } ) -> ( 4 || ( P - 1 ) <-> 2 || ( ( P - 1 ) / 2 ) ) ) |
83 |
57 61 82
|
3imtr4d |
|- ( P e. ( Prime \ { 2 } ) -> ( ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) -> 4 || ( P - 1 ) ) ) |
84 |
46
|
a1i |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> -u 1 e. CC ) |
85 |
|
neg1ne0 |
|- -u 1 =/= 0 |
86 |
85
|
a1i |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> -u 1 =/= 0 ) |
87 |
58
|
a1i |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> 2 e. ZZ ) |
88 |
78
|
biimpa |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ ) |
89 |
|
expmulz |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ ) ) -> ( -u 1 ^ ( 2 x. ( ( ( P - 1 ) / 2 ) / 2 ) ) ) = ( ( -u 1 ^ 2 ) ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) ) |
90 |
84 86 87 88 89
|
syl22anc |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( -u 1 ^ ( 2 x. ( ( ( P - 1 ) / 2 ) / 2 ) ) ) = ( ( -u 1 ^ 2 ) ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) ) |
91 |
2
|
nncnd |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. CC ) |
92 |
91 70 72
|
divcan2d |
|- ( P e. ( Prime \ { 2 } ) -> ( 2 x. ( ( ( P - 1 ) / 2 ) / 2 ) ) = ( ( P - 1 ) / 2 ) ) |
93 |
92
|
adantr |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( 2 x. ( ( ( P - 1 ) / 2 ) / 2 ) ) = ( ( P - 1 ) / 2 ) ) |
94 |
93
|
oveq2d |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( -u 1 ^ ( 2 x. ( ( ( P - 1 ) / 2 ) / 2 ) ) ) = ( -u 1 ^ ( ( P - 1 ) / 2 ) ) ) |
95 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
96 |
95
|
oveq1i |
|- ( ( -u 1 ^ 2 ) ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) = ( 1 ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) |
97 |
|
1exp |
|- ( ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ -> ( 1 ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) = 1 ) |
98 |
88 97
|
syl |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( 1 ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) = 1 ) |
99 |
96 98
|
syl5eq |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( ( -u 1 ^ 2 ) ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) = 1 ) |
100 |
90 94 99
|
3eqtr3d |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( -u 1 ^ ( ( P - 1 ) / 2 ) ) = 1 ) |
101 |
100
|
oveq1d |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) = ( 1 + 1 ) ) |
102 |
22 101
|
eqtr4id |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> 2 = ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) |
103 |
102
|
oveq1d |
|- ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) |
104 |
103
|
ex |
|- ( P e. ( Prime \ { 2 } ) -> ( 4 || ( P - 1 ) -> ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) ) |
105 |
83 104
|
impbid |
|- ( P e. ( Prime \ { 2 } ) -> ( ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) <-> 4 || ( P - 1 ) ) ) |
106 |
13 24 105
|
3bitr2d |
|- ( P e. ( Prime \ { 2 } ) -> ( ( ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = 1 <-> 4 || ( P - 1 ) ) ) |
107 |
|
lgsval3 |
|- ( ( -u 1 e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( -u 1 /L P ) = ( ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) |
108 |
1 107
|
mpan |
|- ( P e. ( Prime \ { 2 } ) -> ( -u 1 /L P ) = ( ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) |
109 |
108
|
eqeq1d |
|- ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 /L P ) = 1 <-> ( ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = 1 ) ) |
110 |
|
4nn |
|- 4 e. NN |
111 |
110
|
a1i |
|- ( P e. ( Prime \ { 2 } ) -> 4 e. NN ) |
112 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
113 |
7 112
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. ZZ ) |
114 |
|
1zzd |
|- ( P e. ( Prime \ { 2 } ) -> 1 e. ZZ ) |
115 |
|
moddvds |
|- ( ( 4 e. NN /\ P e. ZZ /\ 1 e. ZZ ) -> ( ( P mod 4 ) = ( 1 mod 4 ) <-> 4 || ( P - 1 ) ) ) |
116 |
111 113 114 115
|
syl3anc |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P mod 4 ) = ( 1 mod 4 ) <-> 4 || ( P - 1 ) ) ) |
117 |
106 109 116
|
3bitr4d |
|- ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 /L P ) = 1 <-> ( P mod 4 ) = ( 1 mod 4 ) ) ) |
118 |
|
1re |
|- 1 e. RR |
119 |
|
nnrp |
|- ( 4 e. NN -> 4 e. RR+ ) |
120 |
110 119
|
ax-mp |
|- 4 e. RR+ |
121 |
|
0le1 |
|- 0 <_ 1 |
122 |
|
1lt4 |
|- 1 < 4 |
123 |
|
modid |
|- ( ( ( 1 e. RR /\ 4 e. RR+ ) /\ ( 0 <_ 1 /\ 1 < 4 ) ) -> ( 1 mod 4 ) = 1 ) |
124 |
118 120 121 122 123
|
mp4an |
|- ( 1 mod 4 ) = 1 |
125 |
124
|
eqeq2i |
|- ( ( P mod 4 ) = ( 1 mod 4 ) <-> ( P mod 4 ) = 1 ) |
126 |
117 125
|
bitrdi |
|- ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 /L P ) = 1 <-> ( P mod 4 ) = 1 ) ) |