| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 2 |  | oddprm |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) | 
						
							| 3 | 2 | nnnn0d |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN0 ) | 
						
							| 4 |  | zexpcl |  |-  ( ( -u 1 e. ZZ /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( -u 1 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 5 | 1 3 4 | sylancr |  |-  ( P e. ( Prime \ { 2 } ) -> ( -u 1 ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 6 | 5 | peano2zd |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. ZZ ) | 
						
							| 7 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 8 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 9 | 7 8 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. NN ) | 
						
							| 10 | 6 9 | zmodcld |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. NN0 ) | 
						
							| 11 | 10 | nn0cnd |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. CC ) | 
						
							| 12 |  | 1cnd |  |-  ( P e. ( Prime \ { 2 } ) -> 1 e. CC ) | 
						
							| 13 | 11 12 12 | subaddd |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = 1 <-> ( 1 + 1 ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) ) | 
						
							| 14 |  | 2re |  |-  2 e. RR | 
						
							| 15 | 14 | a1i |  |-  ( P e. ( Prime \ { 2 } ) -> 2 e. RR ) | 
						
							| 16 | 9 | nnrpd |  |-  ( P e. ( Prime \ { 2 } ) -> P e. RR+ ) | 
						
							| 17 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 18 | 17 | a1i |  |-  ( P e. ( Prime \ { 2 } ) -> 0 <_ 2 ) | 
						
							| 19 |  | oddprmgt2 |  |-  ( P e. ( Prime \ { 2 } ) -> 2 < P ) | 
						
							| 20 |  | modid |  |-  ( ( ( 2 e. RR /\ P e. RR+ ) /\ ( 0 <_ 2 /\ 2 < P ) ) -> ( 2 mod P ) = 2 ) | 
						
							| 21 | 15 16 18 19 20 | syl22anc |  |-  ( P e. ( Prime \ { 2 } ) -> ( 2 mod P ) = 2 ) | 
						
							| 22 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 23 | 21 22 | eqtrdi |  |-  ( P e. ( Prime \ { 2 } ) -> ( 2 mod P ) = ( 1 + 1 ) ) | 
						
							| 24 | 23 | eqeq1d |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) <-> ( 1 + 1 ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) ) | 
						
							| 25 |  | eldifsni |  |-  ( P e. ( Prime \ { 2 } ) -> P =/= 2 ) | 
						
							| 26 | 25 | neneqd |  |-  ( P e. ( Prime \ { 2 } ) -> -. P = 2 ) | 
						
							| 27 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 28 | 7 27 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 29 |  | 2prm |  |-  2 e. Prime | 
						
							| 30 |  | dvdsprm |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ 2 e. Prime ) -> ( P || 2 <-> P = 2 ) ) | 
						
							| 31 | 28 29 30 | sylancl |  |-  ( P e. ( Prime \ { 2 } ) -> ( P || 2 <-> P = 2 ) ) | 
						
							| 32 | 26 31 | mtbird |  |-  ( P e. ( Prime \ { 2 } ) -> -. P || 2 ) | 
						
							| 33 | 32 | adantr |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> -. P || 2 ) | 
						
							| 34 |  | 1cnd |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> 1 e. CC ) | 
						
							| 35 | 2 | adantr |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( ( P - 1 ) / 2 ) e. NN ) | 
						
							| 36 |  | simpr |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> -. 2 || ( ( P - 1 ) / 2 ) ) | 
						
							| 37 |  | oexpneg |  |-  ( ( 1 e. CC /\ ( ( P - 1 ) / 2 ) e. NN /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( -u 1 ^ ( ( P - 1 ) / 2 ) ) = -u ( 1 ^ ( ( P - 1 ) / 2 ) ) ) | 
						
							| 38 | 34 35 36 37 | syl3anc |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( -u 1 ^ ( ( P - 1 ) / 2 ) ) = -u ( 1 ^ ( ( P - 1 ) / 2 ) ) ) | 
						
							| 39 | 35 | nnzd |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( ( P - 1 ) / 2 ) e. ZZ ) | 
						
							| 40 |  | 1exp |  |-  ( ( ( P - 1 ) / 2 ) e. ZZ -> ( 1 ^ ( ( P - 1 ) / 2 ) ) = 1 ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( 1 ^ ( ( P - 1 ) / 2 ) ) = 1 ) | 
						
							| 42 | 41 | negeqd |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> -u ( 1 ^ ( ( P - 1 ) / 2 ) ) = -u 1 ) | 
						
							| 43 | 38 42 | eqtrd |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( -u 1 ^ ( ( P - 1 ) / 2 ) ) = -u 1 ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) = ( -u 1 + 1 ) ) | 
						
							| 45 |  | ax-1cn |  |-  1 e. CC | 
						
							| 46 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 47 |  | 1pneg1e0 |  |-  ( 1 + -u 1 ) = 0 | 
						
							| 48 | 45 46 47 | addcomli |  |-  ( -u 1 + 1 ) = 0 | 
						
							| 49 | 44 48 | eqtrdi |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) = 0 ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) = ( 2 - 0 ) ) | 
						
							| 51 |  | 2cn |  |-  2 e. CC | 
						
							| 52 | 51 | subid1i |  |-  ( 2 - 0 ) = 2 | 
						
							| 53 | 50 52 | eqtrdi |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) = 2 ) | 
						
							| 54 | 53 | breq2d |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> ( P || ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) <-> P || 2 ) ) | 
						
							| 55 | 33 54 | mtbird |  |-  ( ( P e. ( Prime \ { 2 } ) /\ -. 2 || ( ( P - 1 ) / 2 ) ) -> -. P || ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) ) | 
						
							| 56 | 55 | ex |  |-  ( P e. ( Prime \ { 2 } ) -> ( -. 2 || ( ( P - 1 ) / 2 ) -> -. P || ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) ) ) | 
						
							| 57 | 56 | con4d |  |-  ( P e. ( Prime \ { 2 } ) -> ( P || ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) -> 2 || ( ( P - 1 ) / 2 ) ) ) | 
						
							| 58 |  | 2z |  |-  2 e. ZZ | 
						
							| 59 | 58 | a1i |  |-  ( P e. ( Prime \ { 2 } ) -> 2 e. ZZ ) | 
						
							| 60 |  | moddvds |  |-  ( ( P e. NN /\ 2 e. ZZ /\ ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. ZZ ) -> ( ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) <-> P || ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) ) ) | 
						
							| 61 | 9 59 6 60 | syl3anc |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) <-> P || ( 2 - ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) ) ) | 
						
							| 62 |  | 4z |  |-  4 e. ZZ | 
						
							| 63 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 64 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 65 | 9 64 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( P - 1 ) e. NN0 ) | 
						
							| 66 | 65 | nn0zd |  |-  ( P e. ( Prime \ { 2 } ) -> ( P - 1 ) e. ZZ ) | 
						
							| 67 |  | dvdsval2 |  |-  ( ( 4 e. ZZ /\ 4 =/= 0 /\ ( P - 1 ) e. ZZ ) -> ( 4 || ( P - 1 ) <-> ( ( P - 1 ) / 4 ) e. ZZ ) ) | 
						
							| 68 | 62 63 66 67 | mp3an12i |  |-  ( P e. ( Prime \ { 2 } ) -> ( 4 || ( P - 1 ) <-> ( ( P - 1 ) / 4 ) e. ZZ ) ) | 
						
							| 69 | 65 | nn0cnd |  |-  ( P e. ( Prime \ { 2 } ) -> ( P - 1 ) e. CC ) | 
						
							| 70 | 51 | a1i |  |-  ( P e. ( Prime \ { 2 } ) -> 2 e. CC ) | 
						
							| 71 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 72 | 71 | a1i |  |-  ( P e. ( Prime \ { 2 } ) -> 2 =/= 0 ) | 
						
							| 73 | 69 70 70 72 72 | divdiv1d |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( ( P - 1 ) / 2 ) / 2 ) = ( ( P - 1 ) / ( 2 x. 2 ) ) ) | 
						
							| 74 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 75 | 74 | oveq2i |  |-  ( ( P - 1 ) / ( 2 x. 2 ) ) = ( ( P - 1 ) / 4 ) | 
						
							| 76 | 73 75 | eqtrdi |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( ( P - 1 ) / 2 ) / 2 ) = ( ( P - 1 ) / 4 ) ) | 
						
							| 77 | 76 | eleq1d |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ <-> ( ( P - 1 ) / 4 ) e. ZZ ) ) | 
						
							| 78 | 68 77 | bitr4d |  |-  ( P e. ( Prime \ { 2 } ) -> ( 4 || ( P - 1 ) <-> ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ ) ) | 
						
							| 79 | 2 | nnzd |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. ZZ ) | 
						
							| 80 |  | dvdsval2 |  |-  ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( ( P - 1 ) / 2 ) e. ZZ ) -> ( 2 || ( ( P - 1 ) / 2 ) <-> ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ ) ) | 
						
							| 81 | 58 71 79 80 | mp3an12i |  |-  ( P e. ( Prime \ { 2 } ) -> ( 2 || ( ( P - 1 ) / 2 ) <-> ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ ) ) | 
						
							| 82 | 78 81 | bitr4d |  |-  ( P e. ( Prime \ { 2 } ) -> ( 4 || ( P - 1 ) <-> 2 || ( ( P - 1 ) / 2 ) ) ) | 
						
							| 83 | 57 61 82 | 3imtr4d |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) -> 4 || ( P - 1 ) ) ) | 
						
							| 84 | 46 | a1i |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> -u 1 e. CC ) | 
						
							| 85 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 86 | 85 | a1i |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> -u 1 =/= 0 ) | 
						
							| 87 | 58 | a1i |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> 2 e. ZZ ) | 
						
							| 88 | 78 | biimpa |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ ) | 
						
							| 89 |  | expmulz |  |-  ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ ) ) -> ( -u 1 ^ ( 2 x. ( ( ( P - 1 ) / 2 ) / 2 ) ) ) = ( ( -u 1 ^ 2 ) ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) ) | 
						
							| 90 | 84 86 87 88 89 | syl22anc |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( -u 1 ^ ( 2 x. ( ( ( P - 1 ) / 2 ) / 2 ) ) ) = ( ( -u 1 ^ 2 ) ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) ) | 
						
							| 91 | 2 | nncnd |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. CC ) | 
						
							| 92 | 91 70 72 | divcan2d |  |-  ( P e. ( Prime \ { 2 } ) -> ( 2 x. ( ( ( P - 1 ) / 2 ) / 2 ) ) = ( ( P - 1 ) / 2 ) ) | 
						
							| 93 | 92 | adantr |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( 2 x. ( ( ( P - 1 ) / 2 ) / 2 ) ) = ( ( P - 1 ) / 2 ) ) | 
						
							| 94 | 93 | oveq2d |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( -u 1 ^ ( 2 x. ( ( ( P - 1 ) / 2 ) / 2 ) ) ) = ( -u 1 ^ ( ( P - 1 ) / 2 ) ) ) | 
						
							| 95 |  | neg1sqe1 |  |-  ( -u 1 ^ 2 ) = 1 | 
						
							| 96 | 95 | oveq1i |  |-  ( ( -u 1 ^ 2 ) ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) = ( 1 ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) | 
						
							| 97 |  | 1exp |  |-  ( ( ( ( P - 1 ) / 2 ) / 2 ) e. ZZ -> ( 1 ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) = 1 ) | 
						
							| 98 | 88 97 | syl |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( 1 ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) = 1 ) | 
						
							| 99 | 96 98 | eqtrid |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( ( -u 1 ^ 2 ) ^ ( ( ( P - 1 ) / 2 ) / 2 ) ) = 1 ) | 
						
							| 100 | 90 94 99 | 3eqtr3d |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( -u 1 ^ ( ( P - 1 ) / 2 ) ) = 1 ) | 
						
							| 101 | 100 | oveq1d |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) = ( 1 + 1 ) ) | 
						
							| 102 | 22 101 | eqtr4id |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> 2 = ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) ) | 
						
							| 103 | 102 | oveq1d |  |-  ( ( P e. ( Prime \ { 2 } ) /\ 4 || ( P - 1 ) ) -> ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) | 
						
							| 104 | 103 | ex |  |-  ( P e. ( Prime \ { 2 } ) -> ( 4 || ( P - 1 ) -> ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) ) | 
						
							| 105 | 83 104 | impbid |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( 2 mod P ) = ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) <-> 4 || ( P - 1 ) ) ) | 
						
							| 106 | 13 24 105 | 3bitr2d |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = 1 <-> 4 || ( P - 1 ) ) ) | 
						
							| 107 |  | lgsval3 |  |-  ( ( -u 1 e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( -u 1 /L P ) = ( ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) | 
						
							| 108 | 1 107 | mpan |  |-  ( P e. ( Prime \ { 2 } ) -> ( -u 1 /L P ) = ( ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) | 
						
							| 109 | 108 | eqeq1d |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 /L P ) = 1 <-> ( ( ( ( -u 1 ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = 1 ) ) | 
						
							| 110 |  | 4nn |  |-  4 e. NN | 
						
							| 111 | 110 | a1i |  |-  ( P e. ( Prime \ { 2 } ) -> 4 e. NN ) | 
						
							| 112 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 113 | 7 112 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. ZZ ) | 
						
							| 114 |  | 1zzd |  |-  ( P e. ( Prime \ { 2 } ) -> 1 e. ZZ ) | 
						
							| 115 |  | moddvds |  |-  ( ( 4 e. NN /\ P e. ZZ /\ 1 e. ZZ ) -> ( ( P mod 4 ) = ( 1 mod 4 ) <-> 4 || ( P - 1 ) ) ) | 
						
							| 116 | 111 113 114 115 | syl3anc |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( P mod 4 ) = ( 1 mod 4 ) <-> 4 || ( P - 1 ) ) ) | 
						
							| 117 | 106 109 116 | 3bitr4d |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 /L P ) = 1 <-> ( P mod 4 ) = ( 1 mod 4 ) ) ) | 
						
							| 118 |  | 1re |  |-  1 e. RR | 
						
							| 119 |  | nnrp |  |-  ( 4 e. NN -> 4 e. RR+ ) | 
						
							| 120 | 110 119 | ax-mp |  |-  4 e. RR+ | 
						
							| 121 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 122 |  | 1lt4 |  |-  1 < 4 | 
						
							| 123 |  | modid |  |-  ( ( ( 1 e. RR /\ 4 e. RR+ ) /\ ( 0 <_ 1 /\ 1 < 4 ) ) -> ( 1 mod 4 ) = 1 ) | 
						
							| 124 | 118 120 121 122 123 | mp4an |  |-  ( 1 mod 4 ) = 1 | 
						
							| 125 | 124 | eqeq2i |  |-  ( ( P mod 4 ) = ( 1 mod 4 ) <-> ( P mod 4 ) = 1 ) | 
						
							| 126 | 117 125 | bitrdi |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 /L P ) = 1 <-> ( P mod 4 ) = 1 ) ) |