Step |
Hyp |
Ref |
Expression |
1 |
|
df-m1r |
|- -1R = [ <. 1P , ( 1P +P. 1P ) >. ] ~R |
2 |
1 1
|
oveq12i |
|- ( -1R .R -1R ) = ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) |
3 |
|
df-1r |
|- 1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R |
4 |
|
1pr |
|- 1P e. P. |
5 |
|
addclpr |
|- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) |
6 |
4 4 5
|
mp2an |
|- ( 1P +P. 1P ) e. P. |
7 |
|
mulsrpr |
|- ( ( ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) /\ ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) ) -> ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R ) |
8 |
4 6 4 6 7
|
mp4an |
|- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R |
9 |
|
addasspr |
|- ( ( 1P +P. 1P ) +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) = ( 1P +P. ( 1P +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) ) |
10 |
|
1idpr |
|- ( 1P e. P. -> ( 1P .P. 1P ) = 1P ) |
11 |
4 10
|
ax-mp |
|- ( 1P .P. 1P ) = 1P |
12 |
|
distrpr |
|- ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) = ( ( ( 1P +P. 1P ) .P. 1P ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) |
13 |
|
mulcompr |
|- ( 1P .P. ( 1P +P. 1P ) ) = ( ( 1P +P. 1P ) .P. 1P ) |
14 |
13
|
oveq1i |
|- ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) = ( ( ( 1P +P. 1P ) .P. 1P ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) |
15 |
12 14
|
eqtr4i |
|- ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) = ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) |
16 |
11 15
|
oveq12i |
|- ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) = ( 1P +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) |
17 |
16
|
oveq2i |
|- ( 1P +P. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) ) = ( 1P +P. ( 1P +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) ) |
18 |
9 17
|
eqtr4i |
|- ( ( 1P +P. 1P ) +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) = ( 1P +P. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) ) |
19 |
|
mulclpr |
|- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P .P. 1P ) e. P. ) |
20 |
4 4 19
|
mp2an |
|- ( 1P .P. 1P ) e. P. |
21 |
|
mulclpr |
|- ( ( ( 1P +P. 1P ) e. P. /\ ( 1P +P. 1P ) e. P. ) -> ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) e. P. ) |
22 |
6 6 21
|
mp2an |
|- ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) e. P. |
23 |
|
addclpr |
|- ( ( ( 1P .P. 1P ) e. P. /\ ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) e. P. ) -> ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) e. P. ) |
24 |
20 22 23
|
mp2an |
|- ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) e. P. |
25 |
|
mulclpr |
|- ( ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) -> ( 1P .P. ( 1P +P. 1P ) ) e. P. ) |
26 |
4 6 25
|
mp2an |
|- ( 1P .P. ( 1P +P. 1P ) ) e. P. |
27 |
|
mulclpr |
|- ( ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) -> ( ( 1P +P. 1P ) .P. 1P ) e. P. ) |
28 |
6 4 27
|
mp2an |
|- ( ( 1P +P. 1P ) .P. 1P ) e. P. |
29 |
|
addclpr |
|- ( ( ( 1P .P. ( 1P +P. 1P ) ) e. P. /\ ( ( 1P +P. 1P ) .P. 1P ) e. P. ) -> ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) e. P. ) |
30 |
26 28 29
|
mp2an |
|- ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) e. P. |
31 |
|
enreceq |
|- ( ( ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) /\ ( ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) e. P. /\ ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) e. P. ) ) -> ( [ <. ( 1P +P. 1P ) , 1P >. ] ~R = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R <-> ( ( 1P +P. 1P ) +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) = ( 1P +P. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) ) ) ) |
32 |
6 4 24 30 31
|
mp4an |
|- ( [ <. ( 1P +P. 1P ) , 1P >. ] ~R = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R <-> ( ( 1P +P. 1P ) +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) = ( 1P +P. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) ) ) |
33 |
18 32
|
mpbir |
|- [ <. ( 1P +P. 1P ) , 1P >. ] ~R = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R |
34 |
8 33
|
eqtr4i |
|- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) = [ <. ( 1P +P. 1P ) , 1P >. ] ~R |
35 |
3 34
|
eqtr4i |
|- 1R = ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) |
36 |
2 35
|
eqtr4i |
|- ( -1R .R -1R ) = 1R |