Step |
Hyp |
Ref |
Expression |
1 |
|
df-m1r |
|- -1R = [ <. 1P , ( 1P +P. 1P ) >. ] ~R |
2 |
|
df-1r |
|- 1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R |
3 |
1 2
|
oveq12i |
|- ( -1R +R 1R ) = ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R +R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) |
4 |
|
df-0r |
|- 0R = [ <. 1P , 1P >. ] ~R |
5 |
|
1pr |
|- 1P e. P. |
6 |
|
addclpr |
|- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) |
7 |
5 5 6
|
mp2an |
|- ( 1P +P. 1P ) e. P. |
8 |
|
addsrpr |
|- ( ( ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) /\ ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) ) -> ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R +R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) = [ <. ( 1P +P. ( 1P +P. 1P ) ) , ( ( 1P +P. 1P ) +P. 1P ) >. ] ~R ) |
9 |
5 7 7 5 8
|
mp4an |
|- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R +R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) = [ <. ( 1P +P. ( 1P +P. 1P ) ) , ( ( 1P +P. 1P ) +P. 1P ) >. ] ~R |
10 |
|
addasspr |
|- ( ( 1P +P. 1P ) +P. 1P ) = ( 1P +P. ( 1P +P. 1P ) ) |
11 |
10
|
oveq2i |
|- ( 1P +P. ( ( 1P +P. 1P ) +P. 1P ) ) = ( 1P +P. ( 1P +P. ( 1P +P. 1P ) ) ) |
12 |
|
addclpr |
|- ( ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) -> ( 1P +P. ( 1P +P. 1P ) ) e. P. ) |
13 |
5 7 12
|
mp2an |
|- ( 1P +P. ( 1P +P. 1P ) ) e. P. |
14 |
|
addclpr |
|- ( ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) -> ( ( 1P +P. 1P ) +P. 1P ) e. P. ) |
15 |
7 5 14
|
mp2an |
|- ( ( 1P +P. 1P ) +P. 1P ) e. P. |
16 |
|
enreceq |
|- ( ( ( 1P e. P. /\ 1P e. P. ) /\ ( ( 1P +P. ( 1P +P. 1P ) ) e. P. /\ ( ( 1P +P. 1P ) +P. 1P ) e. P. ) ) -> ( [ <. 1P , 1P >. ] ~R = [ <. ( 1P +P. ( 1P +P. 1P ) ) , ( ( 1P +P. 1P ) +P. 1P ) >. ] ~R <-> ( 1P +P. ( ( 1P +P. 1P ) +P. 1P ) ) = ( 1P +P. ( 1P +P. ( 1P +P. 1P ) ) ) ) ) |
17 |
5 5 13 15 16
|
mp4an |
|- ( [ <. 1P , 1P >. ] ~R = [ <. ( 1P +P. ( 1P +P. 1P ) ) , ( ( 1P +P. 1P ) +P. 1P ) >. ] ~R <-> ( 1P +P. ( ( 1P +P. 1P ) +P. 1P ) ) = ( 1P +P. ( 1P +P. ( 1P +P. 1P ) ) ) ) |
18 |
11 17
|
mpbir |
|- [ <. 1P , 1P >. ] ~R = [ <. ( 1P +P. ( 1P +P. 1P ) ) , ( ( 1P +P. 1P ) +P. 1P ) >. ] ~R |
19 |
9 18
|
eqtr4i |
|- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R +R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) = [ <. 1P , 1P >. ] ~R |
20 |
4 19
|
eqtr4i |
|- 0R = ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R +R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) |
21 |
3 20
|
eqtr4i |
|- ( -1R +R 1R ) = 0R |