Step |
Hyp |
Ref |
Expression |
1 |
|
m1pmeq.p |
|- P = ( Poly1 ` F ) |
2 |
|
m1pmeq.m |
|- M = ( Monic1p ` F ) |
3 |
|
m1pmeq.u |
|- U = ( Unit ` P ) |
4 |
|
m1pmeq.t |
|- .x. = ( .r ` P ) |
5 |
|
m1pmeq.r |
|- ( ph -> F e. Field ) |
6 |
|
m1pmeq.f |
|- ( ph -> I e. M ) |
7 |
|
m1pmeq.g |
|- ( ph -> J e. M ) |
8 |
|
m1pmeq.h |
|- ( ph -> K e. U ) |
9 |
|
m1pmeq.1 |
|- ( ph -> I = ( K .x. J ) ) |
10 |
5
|
flddrngd |
|- ( ph -> F e. DivRing ) |
11 |
10
|
drngringd |
|- ( ph -> F e. Ring ) |
12 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
13 |
12 3
|
unitcl |
|- ( K e. U -> K e. ( Base ` P ) ) |
14 |
8 13
|
syl |
|- ( ph -> K e. ( Base ` P ) ) |
15 |
8 3
|
eleqtrdi |
|- ( ph -> K e. ( Unit ` P ) ) |
16 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
17 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
18 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
19 |
|
eqid |
|- ( deg1 ` F ) = ( deg1 ` F ) |
20 |
1 16 17 18 5 19 14
|
ply1unit |
|- ( ph -> ( K e. ( Unit ` P ) <-> ( ( deg1 ` F ) ` K ) = 0 ) ) |
21 |
15 20
|
mpbid |
|- ( ph -> ( ( deg1 ` F ) ` K ) = 0 ) |
22 |
|
0le0 |
|- 0 <_ 0 |
23 |
21 22
|
eqbrtrdi |
|- ( ph -> ( ( deg1 ` F ) ` K ) <_ 0 ) |
24 |
19 1 12 16
|
deg1le0 |
|- ( ( F e. Ring /\ K e. ( Base ` P ) ) -> ( ( ( deg1 ` F ) ` K ) <_ 0 <-> K = ( ( algSc ` P ) ` ( ( coe1 ` K ) ` 0 ) ) ) ) |
25 |
24
|
biimpa |
|- ( ( ( F e. Ring /\ K e. ( Base ` P ) ) /\ ( ( deg1 ` F ) ` K ) <_ 0 ) -> K = ( ( algSc ` P ) ` ( ( coe1 ` K ) ` 0 ) ) ) |
26 |
11 14 23 25
|
syl21anc |
|- ( ph -> K = ( ( algSc ` P ) ` ( ( coe1 ` K ) ` 0 ) ) ) |
27 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
28 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
29 |
21
|
fveq2d |
|- ( ph -> ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) = ( ( coe1 ` K ) ` 0 ) ) |
30 |
|
0nn0 |
|- 0 e. NN0 |
31 |
21 30
|
eqeltrdi |
|- ( ph -> ( ( deg1 ` F ) ` K ) e. NN0 ) |
32 |
|
eqid |
|- ( coe1 ` K ) = ( coe1 ` K ) |
33 |
32 12 1 17
|
coe1fvalcl |
|- ( ( K e. ( Base ` P ) /\ ( ( deg1 ` F ) ` K ) e. NN0 ) -> ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) e. ( Base ` F ) ) |
34 |
14 31 33
|
syl2anc |
|- ( ph -> ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) e. ( Base ` F ) ) |
35 |
29 34
|
eqeltrrd |
|- ( ph -> ( ( coe1 ` K ) ` 0 ) e. ( Base ` F ) ) |
36 |
17 27 28 11 35
|
ringridmd |
|- ( ph -> ( ( ( coe1 ` K ) ` 0 ) ( .r ` F ) ( 1r ` F ) ) = ( ( coe1 ` K ) ` 0 ) ) |
37 |
9
|
fveq2d |
|- ( ph -> ( coe1 ` I ) = ( coe1 ` ( K .x. J ) ) ) |
38 |
9
|
fveq2d |
|- ( ph -> ( ( deg1 ` F ) ` I ) = ( ( deg1 ` F ) ` ( K .x. J ) ) ) |
39 |
|
eqid |
|- ( RLReg ` F ) = ( RLReg ` F ) |
40 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
41 |
|
drngnzr |
|- ( F e. DivRing -> F e. NzRing ) |
42 |
10 41
|
syl |
|- ( ph -> F e. NzRing ) |
43 |
1
|
ply1nz |
|- ( F e. NzRing -> P e. NzRing ) |
44 |
42 43
|
syl |
|- ( ph -> P e. NzRing ) |
45 |
3 40 44 8
|
unitnz |
|- ( ph -> K =/= ( 0g ` P ) ) |
46 |
|
fldidom |
|- ( F e. Field -> F e. IDomn ) |
47 |
5 46
|
syl |
|- ( ph -> F e. IDomn ) |
48 |
47
|
idomdomd |
|- ( ph -> F e. Domn ) |
49 |
19 1 18 12 40 11 14 23
|
deg1le0eq0 |
|- ( ph -> ( K = ( 0g ` P ) <-> ( ( coe1 ` K ) ` 0 ) = ( 0g ` F ) ) ) |
50 |
49
|
necon3bid |
|- ( ph -> ( K =/= ( 0g ` P ) <-> ( ( coe1 ` K ) ` 0 ) =/= ( 0g ` F ) ) ) |
51 |
45 50
|
mpbid |
|- ( ph -> ( ( coe1 ` K ) ` 0 ) =/= ( 0g ` F ) ) |
52 |
29 51
|
eqnetrd |
|- ( ph -> ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) =/= ( 0g ` F ) ) |
53 |
17 39 18
|
domnrrg |
|- ( ( F e. Domn /\ ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) e. ( Base ` F ) /\ ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) =/= ( 0g ` F ) ) -> ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) e. ( RLReg ` F ) ) |
54 |
48 34 52 53
|
syl3anc |
|- ( ph -> ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) e. ( RLReg ` F ) ) |
55 |
1 12 2
|
mon1pcl |
|- ( J e. M -> J e. ( Base ` P ) ) |
56 |
7 55
|
syl |
|- ( ph -> J e. ( Base ` P ) ) |
57 |
1 40 2
|
mon1pn0 |
|- ( J e. M -> J =/= ( 0g ` P ) ) |
58 |
7 57
|
syl |
|- ( ph -> J =/= ( 0g ` P ) ) |
59 |
19 1 39 12 4 40 11 14 45 54 56 58
|
deg1mul2 |
|- ( ph -> ( ( deg1 ` F ) ` ( K .x. J ) ) = ( ( ( deg1 ` F ) ` K ) + ( ( deg1 ` F ) ` J ) ) ) |
60 |
38 59
|
eqtrd |
|- ( ph -> ( ( deg1 ` F ) ` I ) = ( ( ( deg1 ` F ) ` K ) + ( ( deg1 ` F ) ` J ) ) ) |
61 |
37 60
|
fveq12d |
|- ( ph -> ( ( coe1 ` I ) ` ( ( deg1 ` F ) ` I ) ) = ( ( coe1 ` ( K .x. J ) ) ` ( ( ( deg1 ` F ) ` K ) + ( ( deg1 ` F ) ` J ) ) ) ) |
62 |
19 28 2
|
mon1pldg |
|- ( I e. M -> ( ( coe1 ` I ) ` ( ( deg1 ` F ) ` I ) ) = ( 1r ` F ) ) |
63 |
6 62
|
syl |
|- ( ph -> ( ( coe1 ` I ) ` ( ( deg1 ` F ) ` I ) ) = ( 1r ` F ) ) |
64 |
1 4 27 12 19 40 11 14 45 56 58
|
coe1mul4 |
|- ( ph -> ( ( coe1 ` ( K .x. J ) ) ` ( ( ( deg1 ` F ) ` K ) + ( ( deg1 ` F ) ` J ) ) ) = ( ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) ( .r ` F ) ( ( coe1 ` J ) ` ( ( deg1 ` F ) ` J ) ) ) ) |
65 |
19 28 2
|
mon1pldg |
|- ( J e. M -> ( ( coe1 ` J ) ` ( ( deg1 ` F ) ` J ) ) = ( 1r ` F ) ) |
66 |
7 65
|
syl |
|- ( ph -> ( ( coe1 ` J ) ` ( ( deg1 ` F ) ` J ) ) = ( 1r ` F ) ) |
67 |
29 66
|
oveq12d |
|- ( ph -> ( ( ( coe1 ` K ) ` ( ( deg1 ` F ) ` K ) ) ( .r ` F ) ( ( coe1 ` J ) ` ( ( deg1 ` F ) ` J ) ) ) = ( ( ( coe1 ` K ) ` 0 ) ( .r ` F ) ( 1r ` F ) ) ) |
68 |
64 67
|
eqtrd |
|- ( ph -> ( ( coe1 ` ( K .x. J ) ) ` ( ( ( deg1 ` F ) ` K ) + ( ( deg1 ` F ) ` J ) ) ) = ( ( ( coe1 ` K ) ` 0 ) ( .r ` F ) ( 1r ` F ) ) ) |
69 |
61 63 68
|
3eqtr3rd |
|- ( ph -> ( ( ( coe1 ` K ) ` 0 ) ( .r ` F ) ( 1r ` F ) ) = ( 1r ` F ) ) |
70 |
36 69
|
eqtr3d |
|- ( ph -> ( ( coe1 ` K ) ` 0 ) = ( 1r ` F ) ) |
71 |
70
|
fveq2d |
|- ( ph -> ( ( algSc ` P ) ` ( ( coe1 ` K ) ` 0 ) ) = ( ( algSc ` P ) ` ( 1r ` F ) ) ) |
72 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
73 |
1 16 28 72 11
|
ply1ascl1 |
|- ( ph -> ( ( algSc ` P ) ` ( 1r ` F ) ) = ( 1r ` P ) ) |
74 |
26 71 73
|
3eqtrd |
|- ( ph -> K = ( 1r ` P ) ) |
75 |
74
|
oveq1d |
|- ( ph -> ( K .x. J ) = ( ( 1r ` P ) .x. J ) ) |
76 |
1
|
ply1ring |
|- ( F e. Ring -> P e. Ring ) |
77 |
11 76
|
syl |
|- ( ph -> P e. Ring ) |
78 |
12 4 72 77 56
|
ringlidmd |
|- ( ph -> ( ( 1r ` P ) .x. J ) = J ) |
79 |
9 75 78
|
3eqtrd |
|- ( ph -> I = J ) |