| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpm.s |  |-  S = ( N ConstPolyMat R ) | 
						
							| 2 |  | m2cpm.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 3 |  | m2cpm.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | m2cpm.b |  |-  B = ( Base ` A ) | 
						
							| 5 |  | simpl |  |-  ( ( N e. Fin /\ R e. Ring ) -> N e. Fin ) | 
						
							| 6 | 5 5 | jca |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( N e. Fin /\ N e. Fin ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ m e. B ) -> ( N e. Fin /\ N e. Fin ) ) | 
						
							| 8 |  | mpoexga |  |-  ( ( N e. Fin /\ N e. Fin ) -> ( i e. N , j e. N |-> ( ( algSc ` ( Poly1 ` R ) ) ` ( i m j ) ) ) e. _V ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ m e. B ) -> ( i e. N , j e. N |-> ( ( algSc ` ( Poly1 ` R ) ) ` ( i m j ) ) ) e. _V ) | 
						
							| 10 |  | eqid |  |-  ( Poly1 ` R ) = ( Poly1 ` R ) | 
						
							| 11 |  | eqid |  |-  ( algSc ` ( Poly1 ` R ) ) = ( algSc ` ( Poly1 ` R ) ) | 
						
							| 12 | 2 3 4 10 11 | mat2pmatfval |  |-  ( ( N e. Fin /\ R e. Ring ) -> T = ( m e. B |-> ( i e. N , j e. N |-> ( ( algSc ` ( Poly1 ` R ) ) ` ( i m j ) ) ) ) ) | 
						
							| 13 | 1 2 3 4 | m2cpm |  |-  ( ( N e. Fin /\ R e. Ring /\ b e. B ) -> ( T ` b ) e. S ) | 
						
							| 14 | 13 | 3expa |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ b e. B ) -> ( T ` b ) e. S ) | 
						
							| 15 | 9 12 14 | fmpt2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : B --> S ) |