| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpm.s |  |-  S = ( N ConstPolyMat R ) | 
						
							| 2 |  | m2cpm.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 3 |  | m2cpm.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | m2cpm.b |  |-  B = ( Base ` A ) | 
						
							| 5 |  | eqid |  |-  ( Poly1 ` R ) = ( Poly1 ` R ) | 
						
							| 6 |  | eqid |  |-  ( N Mat ( Poly1 ` R ) ) = ( N Mat ( Poly1 ` R ) ) | 
						
							| 7 |  | eqid |  |-  ( Base ` ( N Mat ( Poly1 ` R ) ) ) = ( Base ` ( N Mat ( Poly1 ` R ) ) ) | 
						
							| 8 | 2 3 4 5 6 7 | mat2pmatf1 |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : B -1-1-> ( Base ` ( N Mat ( Poly1 ` R ) ) ) ) | 
						
							| 9 | 1 2 3 4 | m2cpmf |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : B --> S ) | 
						
							| 10 | 9 | frnd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ran T C_ S ) | 
						
							| 11 |  | f1ssr |  |-  ( ( T : B -1-1-> ( Base ` ( N Mat ( Poly1 ` R ) ) ) /\ ran T C_ S ) -> T : B -1-1-> S ) | 
						
							| 12 | 8 10 11 | syl2anc |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : B -1-1-> S ) |