| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpm.s |  |-  S = ( N ConstPolyMat R ) | 
						
							| 2 |  | m2cpm.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 3 |  | m2cpm.a |  |-  A = ( N Mat R ) | 
						
							| 4 |  | m2cpm.b |  |-  B = ( Base ` A ) | 
						
							| 5 |  | m2cpmghm.p |  |-  P = ( Poly1 ` R ) | 
						
							| 6 |  | m2cpmghm.c |  |-  C = ( N Mat P ) | 
						
							| 7 |  | m2cpmghm.u |  |-  U = ( C |`s S ) | 
						
							| 8 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 9 | 2 3 4 5 6 8 | mat2pmatghm |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( A GrpHom C ) ) | 
						
							| 10 | 1 5 6 | cpmatsubgpmat |  |-  ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubGrp ` C ) ) | 
						
							| 11 | 1 2 3 4 | m2cpmf |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : B --> S ) | 
						
							| 12 | 11 | frnd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ran T C_ S ) | 
						
							| 13 | 7 | resghm2b |  |-  ( ( S e. ( SubGrp ` C ) /\ ran T C_ S ) -> ( T e. ( A GrpHom C ) <-> T e. ( A GrpHom U ) ) ) | 
						
							| 14 | 13 | bicomd |  |-  ( ( S e. ( SubGrp ` C ) /\ ran T C_ S ) -> ( T e. ( A GrpHom U ) <-> T e. ( A GrpHom C ) ) ) | 
						
							| 15 | 10 12 14 | syl2anc |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( T e. ( A GrpHom U ) <-> T e. ( A GrpHom C ) ) ) | 
						
							| 16 | 9 15 | mpbird |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( A GrpHom U ) ) |