| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpminv.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | m2cpminv.k |  |-  K = ( Base ` A ) | 
						
							| 3 |  | m2cpminv.s |  |-  S = ( N ConstPolyMat R ) | 
						
							| 4 |  | m2cpminv.i |  |-  I = ( N cPolyMatToMat R ) | 
						
							| 5 |  | m2cpminv.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 6 | 1 2 3 4 | cpm2mf |  |-  ( ( N e. Fin /\ R e. Ring ) -> I : S --> K ) | 
						
							| 7 | 3 5 1 2 | m2cpmf |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : K --> S ) | 
						
							| 8 | 3 4 5 | m2cpminvid2 |  |-  ( ( N e. Fin /\ R e. Ring /\ s e. S ) -> ( T ` ( I ` s ) ) = s ) | 
						
							| 9 | 8 | 3expa |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ s e. S ) -> ( T ` ( I ` s ) ) = s ) | 
						
							| 10 | 9 | ralrimiva |  |-  ( ( N e. Fin /\ R e. Ring ) -> A. s e. S ( T ` ( I ` s ) ) = s ) | 
						
							| 11 | 4 1 2 5 | m2cpminvid |  |-  ( ( N e. Fin /\ R e. Ring /\ k e. K ) -> ( I ` ( T ` k ) ) = k ) | 
						
							| 12 | 11 | 3expa |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. K ) -> ( I ` ( T ` k ) ) = k ) | 
						
							| 13 | 12 | ralrimiva |  |-  ( ( N e. Fin /\ R e. Ring ) -> A. k e. K ( I ` ( T ` k ) ) = k ) | 
						
							| 14 | 6 7 10 13 | 2fvidf1od |  |-  ( ( N e. Fin /\ R e. Ring ) -> I : S -1-1-onto-> K ) | 
						
							| 15 | 6 7 10 13 | 2fvidinvd |  |-  ( ( N e. Fin /\ R e. Ring ) -> `' I = T ) | 
						
							| 16 | 14 15 | jca |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( I : S -1-1-onto-> K /\ `' I = T ) ) |