Step |
Hyp |
Ref |
Expression |
1 |
|
m2cpminv0.a |
|- A = ( N Mat R ) |
2 |
|
m2cpminv0.i |
|- I = ( N cPolyMatToMat R ) |
3 |
|
m2cpminv0.p |
|- P = ( Poly1 ` R ) |
4 |
|
m2cpminv0.c |
|- C = ( N Mat P ) |
5 |
|
m2cpminv0.0 |
|- .0. = ( 0g ` A ) |
6 |
|
m2cpminv0.z |
|- Z = ( 0g ` C ) |
7 |
|
eqid |
|- ( N matToPolyMat R ) = ( N matToPolyMat R ) |
8 |
1
|
fveq2i |
|- ( 0g ` A ) = ( 0g ` ( N Mat R ) ) |
9 |
5 8
|
eqtri |
|- .0. = ( 0g ` ( N Mat R ) ) |
10 |
4
|
fveq2i |
|- ( 0g ` C ) = ( 0g ` ( N Mat P ) ) |
11 |
6 10
|
eqtri |
|- Z = ( 0g ` ( N Mat P ) ) |
12 |
7 3 9 11
|
0mat2pmat |
|- ( ( R e. Ring /\ N e. Fin ) -> ( ( N matToPolyMat R ) ` .0. ) = Z ) |
13 |
12
|
ancoms |
|- ( ( N e. Fin /\ R e. Ring ) -> ( ( N matToPolyMat R ) ` .0. ) = Z ) |
14 |
13
|
eqcomd |
|- ( ( N e. Fin /\ R e. Ring ) -> Z = ( ( N matToPolyMat R ) ` .0. ) ) |
15 |
14
|
fveq2d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( I ` Z ) = ( I ` ( ( N matToPolyMat R ) ` .0. ) ) ) |
16 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
17 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
18 |
17 5
|
ring0cl |
|- ( A e. Ring -> .0. e. ( Base ` A ) ) |
19 |
16 18
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> .0. e. ( Base ` A ) ) |
20 |
2 1 17 7
|
m2cpminvid |
|- ( ( N e. Fin /\ R e. Ring /\ .0. e. ( Base ` A ) ) -> ( I ` ( ( N matToPolyMat R ) ` .0. ) ) = .0. ) |
21 |
19 20
|
mpd3an3 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( I ` ( ( N matToPolyMat R ) ` .0. ) ) = .0. ) |
22 |
15 21
|
eqtrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( I ` Z ) = .0. ) |