| Step | Hyp | Ref | Expression | 
						
							| 1 |  | m2cpminv0.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | m2cpminv0.i |  |-  I = ( N cPolyMatToMat R ) | 
						
							| 3 |  | m2cpminv0.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | m2cpminv0.c |  |-  C = ( N Mat P ) | 
						
							| 5 |  | m2cpminv0.0 |  |-  .0. = ( 0g ` A ) | 
						
							| 6 |  | m2cpminv0.z |  |-  Z = ( 0g ` C ) | 
						
							| 7 |  | eqid |  |-  ( N matToPolyMat R ) = ( N matToPolyMat R ) | 
						
							| 8 | 1 | fveq2i |  |-  ( 0g ` A ) = ( 0g ` ( N Mat R ) ) | 
						
							| 9 | 5 8 | eqtri |  |-  .0. = ( 0g ` ( N Mat R ) ) | 
						
							| 10 | 4 | fveq2i |  |-  ( 0g ` C ) = ( 0g ` ( N Mat P ) ) | 
						
							| 11 | 6 10 | eqtri |  |-  Z = ( 0g ` ( N Mat P ) ) | 
						
							| 12 | 7 3 9 11 | 0mat2pmat |  |-  ( ( R e. Ring /\ N e. Fin ) -> ( ( N matToPolyMat R ) ` .0. ) = Z ) | 
						
							| 13 | 12 | ancoms |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( N matToPolyMat R ) ` .0. ) = Z ) | 
						
							| 14 | 13 | eqcomd |  |-  ( ( N e. Fin /\ R e. Ring ) -> Z = ( ( N matToPolyMat R ) ` .0. ) ) | 
						
							| 15 | 14 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( I ` Z ) = ( I ` ( ( N matToPolyMat R ) ` .0. ) ) ) | 
						
							| 16 | 1 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 17 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 18 | 17 5 | ring0cl |  |-  ( A e. Ring -> .0. e. ( Base ` A ) ) | 
						
							| 19 | 16 18 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> .0. e. ( Base ` A ) ) | 
						
							| 20 | 2 1 17 7 | m2cpminvid |  |-  ( ( N e. Fin /\ R e. Ring /\ .0. e. ( Base ` A ) ) -> ( I ` ( ( N matToPolyMat R ) ` .0. ) ) = .0. ) | 
						
							| 21 | 19 20 | mpd3an3 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( I ` ( ( N matToPolyMat R ) ` .0. ) ) = .0. ) | 
						
							| 22 | 15 21 | eqtrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( I ` Z ) = .0. ) |