| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2cpm.s |
|- S = ( N ConstPolyMat R ) |
| 2 |
|
m2cpm.t |
|- T = ( N matToPolyMat R ) |
| 3 |
|
m2cpm.a |
|- A = ( N Mat R ) |
| 4 |
|
m2cpm.b |
|- B = ( Base ` A ) |
| 5 |
|
m2cpmghm.p |
|- P = ( Poly1 ` R ) |
| 6 |
|
m2cpmghm.c |
|- C = ( N Mat P ) |
| 7 |
|
m2cpmghm.u |
|- U = ( C |`s S ) |
| 8 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 9 |
2 3 4 5 6 8
|
mat2pmatmhm |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) ) |
| 10 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 11 |
10
|
anim2i |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) |
| 12 |
1 5 6
|
cpmatsrgpmat |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubRing ` C ) ) |
| 13 |
|
eqid |
|- ( mulGrp ` C ) = ( mulGrp ` C ) |
| 14 |
13
|
subrgsubm |
|- ( S e. ( SubRing ` C ) -> S e. ( SubMnd ` ( mulGrp ` C ) ) ) |
| 15 |
11 12 14
|
3syl |
|- ( ( N e. Fin /\ R e. CRing ) -> S e. ( SubMnd ` ( mulGrp ` C ) ) ) |
| 16 |
1 2 3 4
|
m2cpmf |
|- ( ( N e. Fin /\ R e. Ring ) -> T : B --> S ) |
| 17 |
|
frn |
|- ( T : B --> S -> ran T C_ S ) |
| 18 |
11 16 17
|
3syl |
|- ( ( N e. Fin /\ R e. CRing ) -> ran T C_ S ) |
| 19 |
6
|
ovexi |
|- C e. _V |
| 20 |
1
|
ovexi |
|- S e. _V |
| 21 |
7 13
|
mgpress |
|- ( ( C e. _V /\ S e. _V ) -> ( ( mulGrp ` C ) |`s S ) = ( mulGrp ` U ) ) |
| 22 |
19 20 21
|
mp2an |
|- ( ( mulGrp ` C ) |`s S ) = ( mulGrp ` U ) |
| 23 |
22
|
eqcomi |
|- ( mulGrp ` U ) = ( ( mulGrp ` C ) |`s S ) |
| 24 |
23
|
resmhm2b |
|- ( ( S e. ( SubMnd ` ( mulGrp ` C ) ) /\ ran T C_ S ) -> ( T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) <-> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) ) |
| 25 |
15 18 24
|
syl2anc |
|- ( ( N e. Fin /\ R e. CRing ) -> ( T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` C ) ) <-> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) ) |
| 26 |
9 25
|
mpbid |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) |