| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2cpm.s |
|- S = ( N ConstPolyMat R ) |
| 2 |
|
m2cpm.t |
|- T = ( N matToPolyMat R ) |
| 3 |
|
m2cpm.a |
|- A = ( N Mat R ) |
| 4 |
|
m2cpm.b |
|- B = ( Base ` A ) |
| 5 |
|
m2cpmghm.p |
|- P = ( Poly1 ` R ) |
| 6 |
|
m2cpmghm.c |
|- C = ( N Mat P ) |
| 7 |
|
m2cpmghm.u |
|- U = ( C |`s S ) |
| 8 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 9 |
3
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 10 |
8 9
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) |
| 11 |
1 5 6
|
cpmatsrgpmat |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubRing ` C ) ) |
| 12 |
8 11
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> S e. ( SubRing ` C ) ) |
| 13 |
7
|
subrgring |
|- ( S e. ( SubRing ` C ) -> U e. Ring ) |
| 14 |
12 13
|
syl |
|- ( ( N e. Fin /\ R e. CRing ) -> U e. Ring ) |
| 15 |
1 2 3 4 5 6 7
|
m2cpmghm |
|- ( ( N e. Fin /\ R e. Ring ) -> T e. ( A GrpHom U ) ) |
| 16 |
8 15
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( A GrpHom U ) ) |
| 17 |
1 2 3 4 5 6 7
|
m2cpmmhm |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) |
| 18 |
16 17
|
jca |
|- ( ( N e. Fin /\ R e. CRing ) -> ( T e. ( A GrpHom U ) /\ T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) ) |
| 19 |
|
eqid |
|- ( mulGrp ` A ) = ( mulGrp ` A ) |
| 20 |
|
eqid |
|- ( mulGrp ` U ) = ( mulGrp ` U ) |
| 21 |
19 20
|
isrhm |
|- ( T e. ( A RingHom U ) <-> ( ( A e. Ring /\ U e. Ring ) /\ ( T e. ( A GrpHom U ) /\ T e. ( ( mulGrp ` A ) MndHom ( mulGrp ` U ) ) ) ) ) |
| 22 |
10 14 18 21
|
syl21anbrc |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( A RingHom U ) ) |