Step |
Hyp |
Ref |
Expression |
1 |
|
m2cpmfo.s |
|- S = ( N ConstPolyMat R ) |
2 |
|
m2cpmfo.t |
|- T = ( N matToPolyMat R ) |
3 |
|
m2cpmfo.a |
|- A = ( N Mat R ) |
4 |
|
m2cpmfo.k |
|- K = ( Base ` A ) |
5 |
|
m2cpmrngiso.p |
|- P = ( Poly1 ` R ) |
6 |
|
m2cpmrngiso.c |
|- C = ( N Mat P ) |
7 |
|
m2cpmrngiso.u |
|- U = ( C |`s S ) |
8 |
1 2 3 4 5 6 7
|
m2cpmrhm |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( A RingHom U ) ) |
9 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
10 |
9
|
anim2i |
|- ( ( N e. Fin /\ R e. CRing ) -> ( N e. Fin /\ R e. Ring ) ) |
11 |
1 2 3 4
|
m2cpmf1o |
|- ( ( N e. Fin /\ R e. Ring ) -> T : K -1-1-onto-> S ) |
12 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
13 |
1 5 6 12
|
cpmatpmat |
|- ( ( N e. Fin /\ R e. Ring /\ m e. S ) -> m e. ( Base ` C ) ) |
14 |
13
|
3expia |
|- ( ( N e. Fin /\ R e. Ring ) -> ( m e. S -> m e. ( Base ` C ) ) ) |
15 |
14
|
ssrdv |
|- ( ( N e. Fin /\ R e. Ring ) -> S C_ ( Base ` C ) ) |
16 |
7 12
|
ressbas2 |
|- ( S C_ ( Base ` C ) -> S = ( Base ` U ) ) |
17 |
15 16
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> S = ( Base ` U ) ) |
18 |
17
|
eqcomd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` U ) = S ) |
19 |
18
|
f1oeq3d |
|- ( ( N e. Fin /\ R e. Ring ) -> ( T : K -1-1-onto-> ( Base ` U ) <-> T : K -1-1-onto-> S ) ) |
20 |
11 19
|
mpbird |
|- ( ( N e. Fin /\ R e. Ring ) -> T : K -1-1-onto-> ( Base ` U ) ) |
21 |
10 20
|
syl |
|- ( ( N e. Fin /\ R e. CRing ) -> T : K -1-1-onto-> ( Base ` U ) ) |
22 |
3
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
23 |
10 22
|
syl |
|- ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) |
24 |
1 5 6
|
cpmatsubgpmat |
|- ( ( N e. Fin /\ R e. Ring ) -> S e. ( SubGrp ` C ) ) |
25 |
7
|
subggrp |
|- ( S e. ( SubGrp ` C ) -> U e. Grp ) |
26 |
10 24 25
|
3syl |
|- ( ( N e. Fin /\ R e. CRing ) -> U e. Grp ) |
27 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
28 |
4 27
|
isrim |
|- ( ( A e. Ring /\ U e. Grp ) -> ( T e. ( A RingIso U ) <-> ( T e. ( A RingHom U ) /\ T : K -1-1-onto-> ( Base ` U ) ) ) ) |
29 |
23 26 28
|
syl2anc |
|- ( ( N e. Fin /\ R e. CRing ) -> ( T e. ( A RingIso U ) <-> ( T e. ( A RingHom U ) /\ T : K -1-1-onto-> ( Base ` U ) ) ) ) |
30 |
8 21 29
|
mpbir2and |
|- ( ( N e. Fin /\ R e. CRing ) -> T e. ( A RingIso U ) ) |