Metamath Proof Explorer


Theorem m2even

Description: A multiple of 2 is an even number. (Contributed by AV, 5-Jun-2023)

Ref Expression
Assertion m2even
|- ( Z e. ZZ -> ( 2 x. Z ) e. Even )

Proof

Step Hyp Ref Expression
1 2z
 |-  2 e. ZZ
2 1 a1i
 |-  ( Z e. ZZ -> 2 e. ZZ )
3 id
 |-  ( Z e. ZZ -> Z e. ZZ )
4 2 3 zmulcld
 |-  ( Z e. ZZ -> ( 2 x. Z ) e. ZZ )
5 dvdsmul1
 |-  ( ( 2 e. ZZ /\ Z e. ZZ ) -> 2 || ( 2 x. Z ) )
6 1 5 mpan
 |-  ( Z e. ZZ -> 2 || ( 2 x. Z ) )
7 iseven2
 |-  ( ( 2 x. Z ) e. Even <-> ( ( 2 x. Z ) e. ZZ /\ 2 || ( 2 x. Z ) ) )
8 4 6 7 sylanbrc
 |-  ( Z e. ZZ -> ( 2 x. Z ) e. Even )