Step |
Hyp |
Ref |
Expression |
1 |
|
m2pmfzmap.a |
|- A = ( N Mat R ) |
2 |
|
m2pmfzmap.b |
|- B = ( Base ` A ) |
3 |
|
m2pmfzmap.p |
|- P = ( Poly1 ` R ) |
4 |
|
m2pmfzmap.y |
|- Y = ( N Mat P ) |
5 |
|
m2pmfzmap.t |
|- T = ( N matToPolyMat R ) |
6 |
|
simpl1 |
|- ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> N e. Fin ) |
7 |
|
simpl2 |
|- ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> R e. Ring ) |
8 |
|
elmapi |
|- ( b e. ( B ^m ( 0 ... S ) ) -> b : ( 0 ... S ) --> B ) |
9 |
8
|
ffvelrnda |
|- ( ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) -> ( b ` I ) e. B ) |
10 |
9
|
adantl |
|- ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> ( b ` I ) e. B ) |
11 |
5 1 2 3 4
|
mat2pmatbas |
|- ( ( N e. Fin /\ R e. Ring /\ ( b ` I ) e. B ) -> ( T ` ( b ` I ) ) e. ( Base ` Y ) ) |
12 |
6 7 10 11
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> ( T ` ( b ` I ) ) e. ( Base ` Y ) ) |