Metamath Proof Explorer


Theorem m2pmfzmap

Description: The transformed values of a (finite) mapping of integers to matrices. (Contributed by AV, 4-Nov-2019)

Ref Expression
Hypotheses m2pmfzmap.a
|- A = ( N Mat R )
m2pmfzmap.b
|- B = ( Base ` A )
m2pmfzmap.p
|- P = ( Poly1 ` R )
m2pmfzmap.y
|- Y = ( N Mat P )
m2pmfzmap.t
|- T = ( N matToPolyMat R )
Assertion m2pmfzmap
|- ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> ( T ` ( b ` I ) ) e. ( Base ` Y ) )

Proof

Step Hyp Ref Expression
1 m2pmfzmap.a
 |-  A = ( N Mat R )
2 m2pmfzmap.b
 |-  B = ( Base ` A )
3 m2pmfzmap.p
 |-  P = ( Poly1 ` R )
4 m2pmfzmap.y
 |-  Y = ( N Mat P )
5 m2pmfzmap.t
 |-  T = ( N matToPolyMat R )
6 simpl1
 |-  ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> N e. Fin )
7 simpl2
 |-  ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> R e. Ring )
8 elmapi
 |-  ( b e. ( B ^m ( 0 ... S ) ) -> b : ( 0 ... S ) --> B )
9 8 ffvelrnda
 |-  ( ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) -> ( b ` I ) e. B )
10 9 adantl
 |-  ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> ( b ` I ) e. B )
11 5 1 2 3 4 mat2pmatbas
 |-  ( ( N e. Fin /\ R e. Ring /\ ( b ` I ) e. B ) -> ( T ` ( b ` I ) ) e. ( Base ` Y ) )
12 6 7 10 11 syl3anc
 |-  ( ( ( N e. Fin /\ R e. Ring /\ S e. NN0 ) /\ ( b e. ( B ^m ( 0 ... S ) ) /\ I e. ( 0 ... S ) ) ) -> ( T ` ( b ` I ) ) e. ( Base ` Y ) )