| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( A e. On /\ L < L <  | 
						
						
							| 2 | 
							
								
							 | 
							ssltex1 | 
							 |-  ( L < L e. _V )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							 |-  ( ( ( A e. On /\ L < L e. _V )  | 
						
						
							| 4 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( A e. On /\ L < L C_ ( _Old ` A ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							elpwd | 
							 |-  ( ( ( A e. On /\ L < L e. ~P ( _Old ` A ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ssltex2 | 
							 |-  ( L < R e. _V )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							syl | 
							 |-  ( ( ( A e. On /\ L < R e. _V )  | 
						
						
							| 8 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( A e. On /\ L < R C_ ( _Old ` A ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							elpwd | 
							 |-  ( ( ( A e. On /\ L < R e. ~P ( _Old ` A ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ( A e. On /\ L < ( L |s R ) = ( L |s R ) )  | 
						
						
							| 11 | 
							
								
							 | 
							breq1 | 
							 |-  ( l = L -> ( l < L <  | 
						
						
							| 12 | 
							
								
							 | 
							oveq1 | 
							 |-  ( l = L -> ( l |s r ) = ( L |s r ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							eqeq1d | 
							 |-  ( l = L -> ( ( l |s r ) = ( L |s R ) <-> ( L |s r ) = ( L |s R ) ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							anbi12d | 
							 |-  ( l = L -> ( ( l < ( L <  | 
						
						
							| 15 | 
							
								
							 | 
							breq2 | 
							 |-  ( r = R -> ( L < L <  | 
						
						
							| 16 | 
							
								
							 | 
							oveq2 | 
							 |-  ( r = R -> ( L |s r ) = ( L |s R ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqeq1d | 
							 |-  ( r = R -> ( ( L |s r ) = ( L |s R ) <-> ( L |s R ) = ( L |s R ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							anbi12d | 
							 |-  ( r = R -> ( ( L < ( L <  | 
						
						
							| 19 | 
							
								14 18
							 | 
							rspc2ev | 
							 |-  ( ( L e. ~P ( _Old ` A ) /\ R e. ~P ( _Old ` A ) /\ ( L < E. l e. ~P ( _Old ` A ) E. r e. ~P ( _Old ` A ) ( l <  | 
						
						
							| 20 | 
							
								5 9 1 10 19
							 | 
							syl112anc | 
							 |-  ( ( ( A e. On /\ L < E. l e. ~P ( _Old ` A ) E. r e. ~P ( _Old ` A ) ( l <  | 
						
						
							| 21 | 
							
								
							 | 
							elmade2 | 
							 |-  ( A e. On -> ( ( L |s R ) e. ( _Made ` A ) <-> E. l e. ~P ( _Old ` A ) E. r e. ~P ( _Old ` A ) ( l <  | 
						
						
							| 22 | 
							
								21
							 | 
							ad2antrr | 
							 |-  ( ( ( A e. On /\ L < ( ( L |s R ) e. ( _Made ` A ) <-> E. l e. ~P ( _Old ` A ) E. r e. ~P ( _Old ` A ) ( l <  | 
						
						
							| 23 | 
							
								20 22
							 | 
							mpbird | 
							 |-  ( ( ( A e. On /\ L < ( L |s R ) e. ( _Made ` A ) )  |