| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-made |
|- _Made = recs ( ( x e. _V |-> ( |s " ( ~P U. ran x X. ~P U. ran x ) ) ) ) |
| 2 |
1
|
tfr1 |
|- _Made Fn On |
| 3 |
|
madeval2 |
|- ( x e. On -> ( _Made ` x ) = { y e. No | E. z e. ~P U. ( _Made " x ) E. w e. ~P U. ( _Made " x ) ( z < |
| 4 |
|
ssrab2 |
|- { y e. No | E. z e. ~P U. ( _Made " x ) E. w e. ~P U. ( _Made " x ) ( z < |
| 5 |
3 4
|
eqsstrdi |
|- ( x e. On -> ( _Made ` x ) C_ No ) |
| 6 |
|
sseq1 |
|- ( y = ( _Made ` x ) -> ( y C_ No <-> ( _Made ` x ) C_ No ) ) |
| 7 |
5 6
|
syl5ibrcom |
|- ( x e. On -> ( y = ( _Made ` x ) -> y C_ No ) ) |
| 8 |
7
|
rexlimiv |
|- ( E. x e. On y = ( _Made ` x ) -> y C_ No ) |
| 9 |
|
vex |
|- y e. _V |
| 10 |
|
eqeq1 |
|- ( z = y -> ( z = ( _Made ` x ) <-> y = ( _Made ` x ) ) ) |
| 11 |
10
|
rexbidv |
|- ( z = y -> ( E. x e. On z = ( _Made ` x ) <-> E. x e. On y = ( _Made ` x ) ) ) |
| 12 |
|
fnrnfv |
|- ( _Made Fn On -> ran _Made = { z | E. x e. On z = ( _Made ` x ) } ) |
| 13 |
2 12
|
ax-mp |
|- ran _Made = { z | E. x e. On z = ( _Made ` x ) } |
| 14 |
9 11 13
|
elab2 |
|- ( y e. ran _Made <-> E. x e. On y = ( _Made ` x ) ) |
| 15 |
|
velpw |
|- ( y e. ~P No <-> y C_ No ) |
| 16 |
8 14 15
|
3imtr4i |
|- ( y e. ran _Made -> y e. ~P No ) |
| 17 |
16
|
ssriv |
|- ran _Made C_ ~P No |
| 18 |
|
df-f |
|- ( _Made : On --> ~P No <-> ( _Made Fn On /\ ran _Made C_ ~P No ) ) |
| 19 |
2 17 18
|
mpbir2an |
|- _Made : On --> ~P No |