Step |
Hyp |
Ref |
Expression |
1 |
|
madetsumid.a |
|- A = ( N Mat R ) |
2 |
|
madetsumid.b |
|- B = ( Base ` A ) |
3 |
|
madetsumid.u |
|- U = ( mulGrp ` R ) |
4 |
|
madetsumid.y |
|- Y = ( ZRHom ` R ) |
5 |
|
madetsumid.s |
|- S = ( pmSgn ` N ) |
6 |
|
madetsumid.t |
|- .x. = ( .r ` R ) |
7 |
|
fveq2 |
|- ( P = ( _I |` N ) -> ( ( Y o. S ) ` P ) = ( ( Y o. S ) ` ( _I |` N ) ) ) |
8 |
|
fveq1 |
|- ( P = ( _I |` N ) -> ( P ` r ) = ( ( _I |` N ) ` r ) ) |
9 |
8
|
oveq1d |
|- ( P = ( _I |` N ) -> ( ( P ` r ) M r ) = ( ( ( _I |` N ) ` r ) M r ) ) |
10 |
9
|
mpteq2dv |
|- ( P = ( _I |` N ) -> ( r e. N |-> ( ( P ` r ) M r ) ) = ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) |
11 |
10
|
oveq2d |
|- ( P = ( _I |` N ) -> ( U gsum ( r e. N |-> ( ( P ` r ) M r ) ) ) = ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) |
12 |
7 11
|
oveq12d |
|- ( P = ( _I |` N ) -> ( ( ( Y o. S ) ` P ) .x. ( U gsum ( r e. N |-> ( ( P ` r ) M r ) ) ) ) = ( ( ( Y o. S ) ` ( _I |` N ) ) .x. ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) ) |
13 |
12
|
3ad2ant3 |
|- ( ( R e. CRing /\ M e. B /\ P = ( _I |` N ) ) -> ( ( ( Y o. S ) ` P ) .x. ( U gsum ( r e. N |-> ( ( P ` r ) M r ) ) ) ) = ( ( ( Y o. S ) ` ( _I |` N ) ) .x. ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) ) |
14 |
1 2
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
15 |
14
|
simpld |
|- ( M e. B -> N e. Fin ) |
16 |
4 5
|
coeq12i |
|- ( Y o. S ) = ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) |
17 |
16
|
a1i |
|- ( ( R e. CRing /\ N e. Fin ) -> ( Y o. S ) = ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ) |
18 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
19 |
18
|
symgid |
|- ( N e. Fin -> ( _I |` N ) = ( 0g ` ( SymGrp ` N ) ) ) |
20 |
19
|
adantl |
|- ( ( R e. CRing /\ N e. Fin ) -> ( _I |` N ) = ( 0g ` ( SymGrp ` N ) ) ) |
21 |
17 20
|
fveq12d |
|- ( ( R e. CRing /\ N e. Fin ) -> ( ( Y o. S ) ` ( _I |` N ) ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) ) |
22 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
23 |
|
zrhpsgnmhm |
|- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
24 |
3
|
oveq2i |
|- ( ( SymGrp ` N ) MndHom U ) = ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) |
25 |
23 24
|
eleqtrrdi |
|- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom U ) ) |
26 |
22 25
|
sylan |
|- ( ( R e. CRing /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom U ) ) |
27 |
|
eqid |
|- ( 0g ` ( SymGrp ` N ) ) = ( 0g ` ( SymGrp ` N ) ) |
28 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
29 |
3 28
|
ringidval |
|- ( 1r ` R ) = ( 0g ` U ) |
30 |
27 29
|
mhm0 |
|- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom U ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) = ( 1r ` R ) ) |
31 |
26 30
|
syl |
|- ( ( R e. CRing /\ N e. Fin ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` ( 0g ` ( SymGrp ` N ) ) ) = ( 1r ` R ) ) |
32 |
21 31
|
eqtrd |
|- ( ( R e. CRing /\ N e. Fin ) -> ( ( Y o. S ) ` ( _I |` N ) ) = ( 1r ` R ) ) |
33 |
|
fvresi |
|- ( r e. N -> ( ( _I |` N ) ` r ) = r ) |
34 |
33
|
adantl |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ r e. N ) -> ( ( _I |` N ) ` r ) = r ) |
35 |
34
|
oveq1d |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ r e. N ) -> ( ( ( _I |` N ) ` r ) M r ) = ( r M r ) ) |
36 |
35
|
mpteq2dva |
|- ( ( R e. CRing /\ N e. Fin ) -> ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) = ( r e. N |-> ( r M r ) ) ) |
37 |
36
|
oveq2d |
|- ( ( R e. CRing /\ N e. Fin ) -> ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |
38 |
32 37
|
oveq12d |
|- ( ( R e. CRing /\ N e. Fin ) -> ( ( ( Y o. S ) ` ( _I |` N ) ) .x. ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) = ( ( 1r ` R ) .x. ( U gsum ( r e. N |-> ( r M r ) ) ) ) ) |
39 |
15 38
|
sylan2 |
|- ( ( R e. CRing /\ M e. B ) -> ( ( ( Y o. S ) ` ( _I |` N ) ) .x. ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) = ( ( 1r ` R ) .x. ( U gsum ( r e. N |-> ( r M r ) ) ) ) ) |
40 |
1 2 3
|
matgsumcl |
|- ( ( R e. CRing /\ M e. B ) -> ( U gsum ( r e. N |-> ( r M r ) ) ) e. ( Base ` R ) ) |
41 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
42 |
41 6 28
|
ringlidm |
|- ( ( R e. Ring /\ ( U gsum ( r e. N |-> ( r M r ) ) ) e. ( Base ` R ) ) -> ( ( 1r ` R ) .x. ( U gsum ( r e. N |-> ( r M r ) ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |
43 |
22 40 42
|
syl2an2r |
|- ( ( R e. CRing /\ M e. B ) -> ( ( 1r ` R ) .x. ( U gsum ( r e. N |-> ( r M r ) ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |
44 |
39 43
|
eqtrd |
|- ( ( R e. CRing /\ M e. B ) -> ( ( ( Y o. S ) ` ( _I |` N ) ) .x. ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |
45 |
44
|
3adant3 |
|- ( ( R e. CRing /\ M e. B /\ P = ( _I |` N ) ) -> ( ( ( Y o. S ) ` ( _I |` N ) ) .x. ( U gsum ( r e. N |-> ( ( ( _I |` N ) ` r ) M r ) ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |
46 |
13 45
|
eqtrd |
|- ( ( R e. CRing /\ M e. B /\ P = ( _I |` N ) ) -> ( ( ( Y o. S ) ` P ) .x. ( U gsum ( r e. N |-> ( ( P ` r ) M r ) ) ) ) = ( U gsum ( r e. N |-> ( r M r ) ) ) ) |