| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madufval.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | madufval.d |  |-  D = ( N maDet R ) | 
						
							| 3 |  | madufval.j |  |-  J = ( N maAdju R ) | 
						
							| 4 |  | madufval.b |  |-  B = ( Base ` A ) | 
						
							| 5 |  | madufval.o |  |-  .1. = ( 1r ` R ) | 
						
							| 6 |  | madufval.z |  |-  .0. = ( 0g ` R ) | 
						
							| 7 |  | eleq2 |  |-  ( m = (/) -> ( k e. m <-> k e. (/) ) ) | 
						
							| 8 | 7 | ifbid |  |-  ( m = (/) -> if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 9 | 8 | ifeq2d |  |-  ( m = (/) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 10 | 9 | mpoeq3dv |  |-  ( m = (/) -> ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( m = (/) -> ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( m = (/) -> ( ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) <-> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) | 
						
							| 13 |  | eleq2 |  |-  ( m = n -> ( k e. m <-> k e. n ) ) | 
						
							| 14 | 13 | ifbid |  |-  ( m = n -> if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 15 | 14 | ifeq2d |  |-  ( m = n -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 16 | 15 | mpoeq3dv |  |-  ( m = n -> ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( m = n -> ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) | 
						
							| 18 | 17 | eqeq2d |  |-  ( m = n -> ( ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) <-> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) | 
						
							| 19 |  | eleq2 |  |-  ( m = ( n u. { r } ) -> ( k e. m <-> k e. ( n u. { r } ) ) ) | 
						
							| 20 | 19 | ifbid |  |-  ( m = ( n u. { r } ) -> if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 21 | 20 | ifeq2d |  |-  ( m = ( n u. { r } ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 22 | 21 | mpoeq3dv |  |-  ( m = ( n u. { r } ) -> ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( m = ( n u. { r } ) -> ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) | 
						
							| 24 | 23 | eqeq2d |  |-  ( m = ( n u. { r } ) -> ( ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) <-> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) | 
						
							| 25 |  | eleq2 |  |-  ( m = ( N \ { H } ) -> ( k e. m <-> k e. ( N \ { H } ) ) ) | 
						
							| 26 | 25 | ifbid |  |-  ( m = ( N \ { H } ) -> if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 27 | 26 | ifeq2d |  |-  ( m = ( N \ { H } ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 28 | 27 | mpoeq3dv |  |-  ( m = ( N \ { H } ) -> ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) | 
						
							| 29 | 28 | fveq2d |  |-  ( m = ( N \ { H } ) -> ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) | 
						
							| 30 | 29 | eqeq2d |  |-  ( m = ( N \ { H } ) -> ( ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) <-> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) | 
						
							| 31 | 1 2 3 4 5 6 | maducoeval |  |-  ( ( M e. B /\ I e. N /\ H e. N ) -> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , ( k M l ) ) ) ) ) | 
						
							| 32 | 31 | 3adant1l |  |-  ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , ( k M l ) ) ) ) ) | 
						
							| 33 |  | noel |  |-  -. k e. (/) | 
						
							| 34 |  | iffalse |  |-  ( -. k e. (/) -> if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = ( k M l ) ) | 
						
							| 35 | 33 34 | mp1i |  |-  ( ( k e. N /\ l e. N ) -> if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = ( k M l ) ) | 
						
							| 36 | 35 | ifeq2d |  |-  ( ( k e. N /\ l e. N ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , ( k M l ) ) ) | 
						
							| 37 | 36 | mpoeq3ia |  |-  ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , ( k M l ) ) ) | 
						
							| 38 | 37 | fveq2i |  |-  ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , ( k M l ) ) ) ) | 
						
							| 39 | 32 38 | eqtr4di |  |-  ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) | 
						
							| 40 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 41 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 42 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 43 |  | simpl1l |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> R e. CRing ) | 
						
							| 44 |  | simp1r |  |-  ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> M e. B ) | 
						
							| 45 | 1 4 | matrcl |  |-  ( M e. B -> ( N e. Fin /\ R e. _V ) ) | 
						
							| 46 | 45 | simpld |  |-  ( M e. B -> N e. Fin ) | 
						
							| 47 | 44 46 | syl |  |-  ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> N e. Fin ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> N e. Fin ) | 
						
							| 49 |  | simp1l |  |-  ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> R e. CRing ) | 
						
							| 50 | 49 | ad2antrr |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> R e. CRing ) | 
						
							| 51 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 52 | 50 51 | syl |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> R e. Ring ) | 
						
							| 53 | 40 6 | ring0cl |  |-  ( R e. Ring -> .0. e. ( Base ` R ) ) | 
						
							| 54 | 52 53 | syl |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> .0. e. ( Base ` R ) ) | 
						
							| 55 |  | simpl1r |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> M e. B ) | 
						
							| 56 | 1 40 4 | matbas2i |  |-  ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 57 |  | elmapi |  |-  ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) | 
						
							| 58 | 55 56 57 | 3syl |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> M : ( N X. N ) --> ( Base ` R ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> M : ( N X. N ) --> ( Base ` R ) ) | 
						
							| 60 |  | eldifi |  |-  ( r e. ( ( N \ { H } ) \ n ) -> r e. ( N \ { H } ) ) | 
						
							| 61 | 60 | ad2antll |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> r e. ( N \ { H } ) ) | 
						
							| 62 | 61 | eldifad |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> r e. N ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> r e. N ) | 
						
							| 64 |  | simpr |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> l e. N ) | 
						
							| 65 | 59 63 64 | fovcdmd |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( r M l ) e. ( Base ` R ) ) | 
						
							| 66 | 54 65 | ifcld |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( l = I , .0. , ( r M l ) ) e. ( Base ` R ) ) | 
						
							| 67 | 40 5 | ringidcl |  |-  ( R e. Ring -> .1. e. ( Base ` R ) ) | 
						
							| 68 | 52 67 | syl |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> .1. e. ( Base ` R ) ) | 
						
							| 69 | 68 54 | ifcld |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( l = I , .1. , .0. ) e. ( Base ` R ) ) | 
						
							| 70 | 54 | 3adant2 |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> .0. e. ( Base ` R ) ) | 
						
							| 71 | 58 | fovcdmda |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ ( k e. N /\ l e. N ) ) -> ( k M l ) e. ( Base ` R ) ) | 
						
							| 72 | 71 | 3impb |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> ( k M l ) e. ( Base ` R ) ) | 
						
							| 73 | 70 72 | ifcld |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> if ( l = I , .0. , ( k M l ) ) e. ( Base ` R ) ) | 
						
							| 74 | 73 72 | ifcld |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) e. ( Base ` R ) ) | 
						
							| 75 |  | simpl2 |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> I e. N ) | 
						
							| 76 | 58 62 75 | fovcdmd |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( r M I ) e. ( Base ` R ) ) | 
						
							| 77 |  | simpl3 |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> H e. N ) | 
						
							| 78 |  | eldifsni |  |-  ( r e. ( N \ { H } ) -> r =/= H ) | 
						
							| 79 | 61 78 | syl |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> r =/= H ) | 
						
							| 80 | 2 40 41 42 43 48 66 69 74 76 62 77 79 | mdetero |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( D ` ( k e. N , l e. N |-> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) | 
						
							| 81 |  | ifnot |  |-  if ( -. l = I , ( r M l ) , .0. ) = if ( l = I , .0. , ( r M l ) ) | 
						
							| 82 | 81 | eqcomi |  |-  if ( l = I , .0. , ( r M l ) ) = if ( -. l = I , ( r M l ) , .0. ) | 
						
							| 83 | 82 | a1i |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( l = I , .0. , ( r M l ) ) = if ( -. l = I , ( r M l ) , .0. ) ) | 
						
							| 84 |  | ovif2 |  |-  ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) = if ( l = I , ( ( r M I ) ( .r ` R ) .1. ) , ( ( r M I ) ( .r ` R ) .0. ) ) | 
						
							| 85 | 76 | adantr |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( r M I ) e. ( Base ` R ) ) | 
						
							| 86 | 40 42 5 | ringridm |  |-  ( ( R e. Ring /\ ( r M I ) e. ( Base ` R ) ) -> ( ( r M I ) ( .r ` R ) .1. ) = ( r M I ) ) | 
						
							| 87 | 52 85 86 | syl2anc |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( ( r M I ) ( .r ` R ) .1. ) = ( r M I ) ) | 
						
							| 88 | 87 | adantr |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) /\ l = I ) -> ( ( r M I ) ( .r ` R ) .1. ) = ( r M I ) ) | 
						
							| 89 |  | oveq2 |  |-  ( l = I -> ( r M l ) = ( r M I ) ) | 
						
							| 90 | 89 | adantl |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) /\ l = I ) -> ( r M l ) = ( r M I ) ) | 
						
							| 91 | 88 90 | eqtr4d |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) /\ l = I ) -> ( ( r M I ) ( .r ` R ) .1. ) = ( r M l ) ) | 
						
							| 92 | 91 | ifeq1da |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( l = I , ( ( r M I ) ( .r ` R ) .1. ) , ( ( r M I ) ( .r ` R ) .0. ) ) = if ( l = I , ( r M l ) , ( ( r M I ) ( .r ` R ) .0. ) ) ) | 
						
							| 93 | 40 42 6 | ringrz |  |-  ( ( R e. Ring /\ ( r M I ) e. ( Base ` R ) ) -> ( ( r M I ) ( .r ` R ) .0. ) = .0. ) | 
						
							| 94 | 52 85 93 | syl2anc |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( ( r M I ) ( .r ` R ) .0. ) = .0. ) | 
						
							| 95 | 94 | ifeq2d |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( l = I , ( r M l ) , ( ( r M I ) ( .r ` R ) .0. ) ) = if ( l = I , ( r M l ) , .0. ) ) | 
						
							| 96 | 92 95 | eqtrd |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( l = I , ( ( r M I ) ( .r ` R ) .1. ) , ( ( r M I ) ( .r ` R ) .0. ) ) = if ( l = I , ( r M l ) , .0. ) ) | 
						
							| 97 | 84 96 | eqtrid |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) = if ( l = I , ( r M l ) , .0. ) ) | 
						
							| 98 | 83 97 | oveq12d |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( if ( -. l = I , ( r M l ) , .0. ) ( +g ` R ) if ( l = I , ( r M l ) , .0. ) ) ) | 
						
							| 99 |  | ringmnd |  |-  ( R e. Ring -> R e. Mnd ) | 
						
							| 100 | 52 99 | syl |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> R e. Mnd ) | 
						
							| 101 |  | id |  |-  ( -. l = I -> -. l = I ) | 
						
							| 102 |  | imnan |  |-  ( ( -. l = I -> -. l = I ) <-> -. ( -. l = I /\ l = I ) ) | 
						
							| 103 | 101 102 | mpbi |  |-  -. ( -. l = I /\ l = I ) | 
						
							| 104 | 103 | a1i |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> -. ( -. l = I /\ l = I ) ) | 
						
							| 105 | 40 6 41 | mndifsplit |  |-  ( ( R e. Mnd /\ ( r M l ) e. ( Base ` R ) /\ -. ( -. l = I /\ l = I ) ) -> if ( ( -. l = I \/ l = I ) , ( r M l ) , .0. ) = ( if ( -. l = I , ( r M l ) , .0. ) ( +g ` R ) if ( l = I , ( r M l ) , .0. ) ) ) | 
						
							| 106 | 100 65 104 105 | syl3anc |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( ( -. l = I \/ l = I ) , ( r M l ) , .0. ) = ( if ( -. l = I , ( r M l ) , .0. ) ( +g ` R ) if ( l = I , ( r M l ) , .0. ) ) ) | 
						
							| 107 |  | pm2.1 |  |-  ( -. l = I \/ l = I ) | 
						
							| 108 |  | iftrue |  |-  ( ( -. l = I \/ l = I ) -> if ( ( -. l = I \/ l = I ) , ( r M l ) , .0. ) = ( r M l ) ) | 
						
							| 109 | 107 108 | mp1i |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( ( -. l = I \/ l = I ) , ( r M l ) , .0. ) = ( r M l ) ) | 
						
							| 110 | 98 106 109 | 3eqtr2d |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( r M l ) ) | 
						
							| 111 | 110 | 3adant2 |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( r M l ) ) | 
						
							| 112 |  | oveq1 |  |-  ( k = r -> ( k M l ) = ( r M l ) ) | 
						
							| 113 | 112 | eqeq2d |  |-  ( k = r -> ( ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( k M l ) <-> ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( r M l ) ) ) | 
						
							| 114 | 111 113 | syl5ibrcom |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> ( k = r -> ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( k M l ) ) ) | 
						
							| 115 | 114 | imp |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( k M l ) ) | 
						
							| 116 |  | iftrue |  |-  ( k = r -> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) ) | 
						
							| 117 | 116 | adantl |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) ) | 
						
							| 118 | 79 | neneqd |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> -. r = H ) | 
						
							| 119 | 118 | 3ad2ant1 |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> -. r = H ) | 
						
							| 120 |  | eqeq1 |  |-  ( k = r -> ( k = H <-> r = H ) ) | 
						
							| 121 | 120 | notbid |  |-  ( k = r -> ( -. k = H <-> -. r = H ) ) | 
						
							| 122 | 119 121 | syl5ibrcom |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> ( k = r -> -. k = H ) ) | 
						
							| 123 | 122 | imp |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> -. k = H ) | 
						
							| 124 | 123 | iffalsed |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 125 |  | eldifn |  |-  ( r e. ( ( N \ { H } ) \ n ) -> -. r e. n ) | 
						
							| 126 | 125 | ad2antll |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> -. r e. n ) | 
						
							| 127 | 126 | 3ad2ant1 |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> -. r e. n ) | 
						
							| 128 |  | eleq1w |  |-  ( k = r -> ( k e. n <-> r e. n ) ) | 
						
							| 129 | 128 | notbid |  |-  ( k = r -> ( -. k e. n <-> -. r e. n ) ) | 
						
							| 130 | 127 129 | syl5ibrcom |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> ( k = r -> -. k e. n ) ) | 
						
							| 131 | 130 | imp |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> -. k e. n ) | 
						
							| 132 | 131 | iffalsed |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = ( k M l ) ) | 
						
							| 133 | 124 132 | eqtrd |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = ( k M l ) ) | 
						
							| 134 | 115 117 133 | 3eqtr4d |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 135 |  | iffalse |  |-  ( -. k = r -> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 136 | 135 | adantl |  |-  ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ -. k = r ) -> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 137 | 134 136 | pm2.61dan |  |-  ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 138 | 137 | mpoeq3dva |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( k e. N , l e. N |-> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) | 
						
							| 139 | 138 | fveq2d |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( D ` ( k e. N , l e. N |-> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) | 
						
							| 140 |  | neeq2 |  |-  ( k = H -> ( r =/= k <-> r =/= H ) ) | 
						
							| 141 | 140 | biimparc |  |-  ( ( r =/= H /\ k = H ) -> r =/= k ) | 
						
							| 142 | 141 | necomd |  |-  ( ( r =/= H /\ k = H ) -> k =/= r ) | 
						
							| 143 | 142 | neneqd |  |-  ( ( r =/= H /\ k = H ) -> -. k = r ) | 
						
							| 144 | 143 | iffalsed |  |-  ( ( r =/= H /\ k = H ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( l = I , .1. , .0. ) ) = if ( l = I , .1. , .0. ) ) | 
						
							| 145 |  | iftrue |  |-  ( k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( l = I , .1. , .0. ) ) | 
						
							| 146 | 145 | adantl |  |-  ( ( r =/= H /\ k = H ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( l = I , .1. , .0. ) ) | 
						
							| 147 | 146 | ifeq2d |  |-  ( ( r =/= H /\ k = H ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( l = I , .1. , .0. ) ) ) | 
						
							| 148 |  | iftrue |  |-  ( k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( l = I , .1. , .0. ) ) | 
						
							| 149 | 148 | adantl |  |-  ( ( r =/= H /\ k = H ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( l = I , .1. , .0. ) ) | 
						
							| 150 | 144 147 149 | 3eqtr4d |  |-  ( ( r =/= H /\ k = H ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 151 | 112 | ifeq2d |  |-  ( k = r -> if ( l = I , .0. , ( k M l ) ) = if ( l = I , .0. , ( r M l ) ) ) | 
						
							| 152 |  | vsnid |  |-  r e. { r } | 
						
							| 153 |  | elun2 |  |-  ( r e. { r } -> r e. ( n u. { r } ) ) | 
						
							| 154 | 152 153 | ax-mp |  |-  r e. ( n u. { r } ) | 
						
							| 155 |  | eleq1w |  |-  ( k = r -> ( k e. ( n u. { r } ) <-> r e. ( n u. { r } ) ) ) | 
						
							| 156 | 154 155 | mpbiri |  |-  ( k = r -> k e. ( n u. { r } ) ) | 
						
							| 157 | 156 | iftrued |  |-  ( k = r -> if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( l = I , .0. , ( k M l ) ) ) | 
						
							| 158 |  | iftrue |  |-  ( k = r -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( l = I , .0. , ( r M l ) ) ) | 
						
							| 159 | 151 157 158 | 3eqtr4rd |  |-  ( k = r -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 160 | 159 | adantl |  |-  ( ( ( r =/= H /\ -. k = H ) /\ k = r ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 161 |  | iffalse |  |-  ( -. k = r -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 162 |  | orc |  |-  ( k e. n -> ( k e. n \/ k = r ) ) | 
						
							| 163 |  | orel2 |  |-  ( -. k = r -> ( ( k e. n \/ k = r ) -> k e. n ) ) | 
						
							| 164 | 162 163 | impbid2 |  |-  ( -. k = r -> ( k e. n <-> ( k e. n \/ k = r ) ) ) | 
						
							| 165 |  | elun |  |-  ( k e. ( n u. { r } ) <-> ( k e. n \/ k e. { r } ) ) | 
						
							| 166 |  | velsn |  |-  ( k e. { r } <-> k = r ) | 
						
							| 167 | 166 | orbi2i |  |-  ( ( k e. n \/ k e. { r } ) <-> ( k e. n \/ k = r ) ) | 
						
							| 168 | 165 167 | bitr2i |  |-  ( ( k e. n \/ k = r ) <-> k e. ( n u. { r } ) ) | 
						
							| 169 | 164 168 | bitrdi |  |-  ( -. k = r -> ( k e. n <-> k e. ( n u. { r } ) ) ) | 
						
							| 170 | 169 | ifbid |  |-  ( -. k = r -> if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 171 | 161 170 | eqtrd |  |-  ( -. k = r -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 172 | 171 | adantl |  |-  ( ( ( r =/= H /\ -. k = H ) /\ -. k = r ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 173 | 160 172 | pm2.61dan |  |-  ( ( r =/= H /\ -. k = H ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 174 |  | iffalse |  |-  ( -. k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 175 | 174 | ifeq2d |  |-  ( -. k = H -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 176 | 175 | adantl |  |-  ( ( r =/= H /\ -. k = H ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 177 |  | iffalse |  |-  ( -. k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 178 | 177 | adantl |  |-  ( ( r =/= H /\ -. k = H ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 179 | 173 176 178 | 3eqtr4d |  |-  ( ( r =/= H /\ -. k = H ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 180 | 150 179 | pm2.61dan |  |-  ( r =/= H -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) | 
						
							| 181 | 180 | mpoeq3dv |  |-  ( r =/= H -> ( k e. N , l e. N |-> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) | 
						
							| 182 | 181 | fveq2d |  |-  ( r =/= H -> ( D ` ( k e. N , l e. N |-> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) | 
						
							| 183 | 79 182 | syl |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( D ` ( k e. N , l e. N |-> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) | 
						
							| 184 | 80 139 183 | 3eqtr3d |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) | 
						
							| 185 | 184 | eqeq2d |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) <-> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) | 
						
							| 186 | 185 | biimpd |  |-  ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) -> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) | 
						
							| 187 |  | difss |  |-  ( N \ { H } ) C_ N | 
						
							| 188 |  | ssfi |  |-  ( ( N e. Fin /\ ( N \ { H } ) C_ N ) -> ( N \ { H } ) e. Fin ) | 
						
							| 189 | 47 187 188 | sylancl |  |-  ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> ( N \ { H } ) e. Fin ) | 
						
							| 190 | 12 18 24 30 39 186 189 | findcard2d |  |-  ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) | 
						
							| 191 |  | iba |  |-  ( k = H -> ( l = I <-> ( l = I /\ k = H ) ) ) | 
						
							| 192 | 191 | ifbid |  |-  ( k = H -> if ( l = I , .1. , .0. ) = if ( ( l = I /\ k = H ) , .1. , .0. ) ) | 
						
							| 193 |  | iftrue |  |-  ( k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( l = I , .1. , .0. ) ) | 
						
							| 194 |  | iftrue |  |-  ( ( k = H \/ l = I ) -> if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) = if ( ( l = I /\ k = H ) , .1. , .0. ) ) | 
						
							| 195 | 194 | orcs |  |-  ( k = H -> if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) = if ( ( l = I /\ k = H ) , .1. , .0. ) ) | 
						
							| 196 | 192 193 195 | 3eqtr4d |  |-  ( k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) | 
						
							| 197 | 196 | adantl |  |-  ( ( ( k e. N /\ l e. N ) /\ k = H ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) | 
						
							| 198 |  | iffalse |  |-  ( -. k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 199 | 198 | adantl |  |-  ( ( ( k e. N /\ l e. N ) /\ -. k = H ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) | 
						
							| 200 |  | neqne |  |-  ( -. k = H -> k =/= H ) | 
						
							| 201 | 200 | anim2i |  |-  ( ( k e. N /\ -. k = H ) -> ( k e. N /\ k =/= H ) ) | 
						
							| 202 | 201 | adantlr |  |-  ( ( ( k e. N /\ l e. N ) /\ -. k = H ) -> ( k e. N /\ k =/= H ) ) | 
						
							| 203 |  | eldifsn |  |-  ( k e. ( N \ { H } ) <-> ( k e. N /\ k =/= H ) ) | 
						
							| 204 | 202 203 | sylibr |  |-  ( ( ( k e. N /\ l e. N ) /\ -. k = H ) -> k e. ( N \ { H } ) ) | 
						
							| 205 | 204 | iftrued |  |-  ( ( ( k e. N /\ l e. N ) /\ -. k = H ) -> if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( l = I , .0. , ( k M l ) ) ) | 
						
							| 206 |  | biorf |  |-  ( -. k = H -> ( l = I <-> ( k = H \/ l = I ) ) ) | 
						
							| 207 |  | id |  |-  ( -. k = H -> -. k = H ) | 
						
							| 208 | 207 | intnand |  |-  ( -. k = H -> -. ( l = I /\ k = H ) ) | 
						
							| 209 | 208 | iffalsed |  |-  ( -. k = H -> if ( ( l = I /\ k = H ) , .1. , .0. ) = .0. ) | 
						
							| 210 | 209 | eqcomd |  |-  ( -. k = H -> .0. = if ( ( l = I /\ k = H ) , .1. , .0. ) ) | 
						
							| 211 | 206 210 | ifbieq1d |  |-  ( -. k = H -> if ( l = I , .0. , ( k M l ) ) = if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) | 
						
							| 212 | 211 | adantl |  |-  ( ( ( k e. N /\ l e. N ) /\ -. k = H ) -> if ( l = I , .0. , ( k M l ) ) = if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) | 
						
							| 213 | 199 205 212 | 3eqtrd |  |-  ( ( ( k e. N /\ l e. N ) /\ -. k = H ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) | 
						
							| 214 | 197 213 | pm2.61dan |  |-  ( ( k e. N /\ l e. N ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) | 
						
							| 215 | 214 | mpoeq3ia |  |-  ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( k e. N , l e. N |-> if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) | 
						
							| 216 | 215 | fveq2i |  |-  ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) ) | 
						
							| 217 | 190 216 | eqtrdi |  |-  ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) ) ) |