Step |
Hyp |
Ref |
Expression |
1 |
|
madufval.a |
|- A = ( N Mat R ) |
2 |
|
madufval.d |
|- D = ( N maDet R ) |
3 |
|
madufval.j |
|- J = ( N maAdju R ) |
4 |
|
madufval.b |
|- B = ( Base ` A ) |
5 |
|
madufval.o |
|- .1. = ( 1r ` R ) |
6 |
|
madufval.z |
|- .0. = ( 0g ` R ) |
7 |
|
eleq2 |
|- ( m = (/) -> ( k e. m <-> k e. (/) ) ) |
8 |
7
|
ifbid |
|- ( m = (/) -> if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
9 |
8
|
ifeq2d |
|- ( m = (/) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
10 |
9
|
mpoeq3dv |
|- ( m = (/) -> ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) |
11 |
10
|
fveq2d |
|- ( m = (/) -> ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) |
12 |
11
|
eqeq2d |
|- ( m = (/) -> ( ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) <-> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) |
13 |
|
eleq2 |
|- ( m = n -> ( k e. m <-> k e. n ) ) |
14 |
13
|
ifbid |
|- ( m = n -> if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
15 |
14
|
ifeq2d |
|- ( m = n -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
16 |
15
|
mpoeq3dv |
|- ( m = n -> ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) |
17 |
16
|
fveq2d |
|- ( m = n -> ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) |
18 |
17
|
eqeq2d |
|- ( m = n -> ( ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) <-> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) |
19 |
|
eleq2 |
|- ( m = ( n u. { r } ) -> ( k e. m <-> k e. ( n u. { r } ) ) ) |
20 |
19
|
ifbid |
|- ( m = ( n u. { r } ) -> if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
21 |
20
|
ifeq2d |
|- ( m = ( n u. { r } ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
22 |
21
|
mpoeq3dv |
|- ( m = ( n u. { r } ) -> ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) |
23 |
22
|
fveq2d |
|- ( m = ( n u. { r } ) -> ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) |
24 |
23
|
eqeq2d |
|- ( m = ( n u. { r } ) -> ( ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) <-> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) |
25 |
|
eleq2 |
|- ( m = ( N \ { H } ) -> ( k e. m <-> k e. ( N \ { H } ) ) ) |
26 |
25
|
ifbid |
|- ( m = ( N \ { H } ) -> if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
27 |
26
|
ifeq2d |
|- ( m = ( N \ { H } ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
28 |
27
|
mpoeq3dv |
|- ( m = ( N \ { H } ) -> ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) |
29 |
28
|
fveq2d |
|- ( m = ( N \ { H } ) -> ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) |
30 |
29
|
eqeq2d |
|- ( m = ( N \ { H } ) -> ( ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. m , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) <-> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) |
31 |
1 2 3 4 5 6
|
maducoeval |
|- ( ( M e. B /\ I e. N /\ H e. N ) -> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , ( k M l ) ) ) ) ) |
32 |
31
|
3adant1l |
|- ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , ( k M l ) ) ) ) ) |
33 |
|
noel |
|- -. k e. (/) |
34 |
|
iffalse |
|- ( -. k e. (/) -> if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = ( k M l ) ) |
35 |
33 34
|
mp1i |
|- ( ( k e. N /\ l e. N ) -> if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = ( k M l ) ) |
36 |
35
|
ifeq2d |
|- ( ( k e. N /\ l e. N ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , ( k M l ) ) ) |
37 |
36
|
mpoeq3ia |
|- ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , ( k M l ) ) ) |
38 |
37
|
fveq2i |
|- ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , ( k M l ) ) ) ) |
39 |
32 38
|
eqtr4di |
|- ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. (/) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) |
40 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
41 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
42 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
43 |
|
simpl1l |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> R e. CRing ) |
44 |
|
simp1r |
|- ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> M e. B ) |
45 |
1 4
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
46 |
45
|
simpld |
|- ( M e. B -> N e. Fin ) |
47 |
44 46
|
syl |
|- ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> N e. Fin ) |
48 |
47
|
adantr |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> N e. Fin ) |
49 |
|
simp1l |
|- ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> R e. CRing ) |
50 |
49
|
ad2antrr |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> R e. CRing ) |
51 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
52 |
50 51
|
syl |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> R e. Ring ) |
53 |
40 6
|
ring0cl |
|- ( R e. Ring -> .0. e. ( Base ` R ) ) |
54 |
52 53
|
syl |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> .0. e. ( Base ` R ) ) |
55 |
|
simpl1r |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> M e. B ) |
56 |
1 40 4
|
matbas2i |
|- ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
57 |
|
elmapi |
|- ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
58 |
55 56 57
|
3syl |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
59 |
58
|
adantr |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> M : ( N X. N ) --> ( Base ` R ) ) |
60 |
|
eldifi |
|- ( r e. ( ( N \ { H } ) \ n ) -> r e. ( N \ { H } ) ) |
61 |
60
|
ad2antll |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> r e. ( N \ { H } ) ) |
62 |
61
|
eldifad |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> r e. N ) |
63 |
62
|
adantr |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> r e. N ) |
64 |
|
simpr |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> l e. N ) |
65 |
59 63 64
|
fovrnd |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( r M l ) e. ( Base ` R ) ) |
66 |
54 65
|
ifcld |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( l = I , .0. , ( r M l ) ) e. ( Base ` R ) ) |
67 |
40 5
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
68 |
52 67
|
syl |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> .1. e. ( Base ` R ) ) |
69 |
68 54
|
ifcld |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( l = I , .1. , .0. ) e. ( Base ` R ) ) |
70 |
54
|
3adant2 |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> .0. e. ( Base ` R ) ) |
71 |
58
|
fovrnda |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ ( k e. N /\ l e. N ) ) -> ( k M l ) e. ( Base ` R ) ) |
72 |
71
|
3impb |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> ( k M l ) e. ( Base ` R ) ) |
73 |
70 72
|
ifcld |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> if ( l = I , .0. , ( k M l ) ) e. ( Base ` R ) ) |
74 |
73 72
|
ifcld |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) e. ( Base ` R ) ) |
75 |
|
simpl2 |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> I e. N ) |
76 |
58 62 75
|
fovrnd |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( r M I ) e. ( Base ` R ) ) |
77 |
|
simpl3 |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> H e. N ) |
78 |
|
eldifsni |
|- ( r e. ( N \ { H } ) -> r =/= H ) |
79 |
61 78
|
syl |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> r =/= H ) |
80 |
2 40 41 42 43 48 66 69 74 76 62 77 79
|
mdetero |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( D ` ( k e. N , l e. N |-> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) |
81 |
|
ifnot |
|- if ( -. l = I , ( r M l ) , .0. ) = if ( l = I , .0. , ( r M l ) ) |
82 |
81
|
eqcomi |
|- if ( l = I , .0. , ( r M l ) ) = if ( -. l = I , ( r M l ) , .0. ) |
83 |
82
|
a1i |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( l = I , .0. , ( r M l ) ) = if ( -. l = I , ( r M l ) , .0. ) ) |
84 |
|
ovif2 |
|- ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) = if ( l = I , ( ( r M I ) ( .r ` R ) .1. ) , ( ( r M I ) ( .r ` R ) .0. ) ) |
85 |
76
|
adantr |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( r M I ) e. ( Base ` R ) ) |
86 |
40 42 5
|
ringridm |
|- ( ( R e. Ring /\ ( r M I ) e. ( Base ` R ) ) -> ( ( r M I ) ( .r ` R ) .1. ) = ( r M I ) ) |
87 |
52 85 86
|
syl2anc |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( ( r M I ) ( .r ` R ) .1. ) = ( r M I ) ) |
88 |
87
|
adantr |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) /\ l = I ) -> ( ( r M I ) ( .r ` R ) .1. ) = ( r M I ) ) |
89 |
|
oveq2 |
|- ( l = I -> ( r M l ) = ( r M I ) ) |
90 |
89
|
adantl |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) /\ l = I ) -> ( r M l ) = ( r M I ) ) |
91 |
88 90
|
eqtr4d |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) /\ l = I ) -> ( ( r M I ) ( .r ` R ) .1. ) = ( r M l ) ) |
92 |
91
|
ifeq1da |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( l = I , ( ( r M I ) ( .r ` R ) .1. ) , ( ( r M I ) ( .r ` R ) .0. ) ) = if ( l = I , ( r M l ) , ( ( r M I ) ( .r ` R ) .0. ) ) ) |
93 |
40 42 6
|
ringrz |
|- ( ( R e. Ring /\ ( r M I ) e. ( Base ` R ) ) -> ( ( r M I ) ( .r ` R ) .0. ) = .0. ) |
94 |
52 85 93
|
syl2anc |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( ( r M I ) ( .r ` R ) .0. ) = .0. ) |
95 |
94
|
ifeq2d |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( l = I , ( r M l ) , ( ( r M I ) ( .r ` R ) .0. ) ) = if ( l = I , ( r M l ) , .0. ) ) |
96 |
92 95
|
eqtrd |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( l = I , ( ( r M I ) ( .r ` R ) .1. ) , ( ( r M I ) ( .r ` R ) .0. ) ) = if ( l = I , ( r M l ) , .0. ) ) |
97 |
84 96
|
eqtrid |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) = if ( l = I , ( r M l ) , .0. ) ) |
98 |
83 97
|
oveq12d |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( if ( -. l = I , ( r M l ) , .0. ) ( +g ` R ) if ( l = I , ( r M l ) , .0. ) ) ) |
99 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
100 |
52 99
|
syl |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> R e. Mnd ) |
101 |
|
id |
|- ( -. l = I -> -. l = I ) |
102 |
|
imnan |
|- ( ( -. l = I -> -. l = I ) <-> -. ( -. l = I /\ l = I ) ) |
103 |
101 102
|
mpbi |
|- -. ( -. l = I /\ l = I ) |
104 |
103
|
a1i |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> -. ( -. l = I /\ l = I ) ) |
105 |
40 6 41
|
mndifsplit |
|- ( ( R e. Mnd /\ ( r M l ) e. ( Base ` R ) /\ -. ( -. l = I /\ l = I ) ) -> if ( ( -. l = I \/ l = I ) , ( r M l ) , .0. ) = ( if ( -. l = I , ( r M l ) , .0. ) ( +g ` R ) if ( l = I , ( r M l ) , .0. ) ) ) |
106 |
100 65 104 105
|
syl3anc |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( ( -. l = I \/ l = I ) , ( r M l ) , .0. ) = ( if ( -. l = I , ( r M l ) , .0. ) ( +g ` R ) if ( l = I , ( r M l ) , .0. ) ) ) |
107 |
|
pm2.1 |
|- ( -. l = I \/ l = I ) |
108 |
|
iftrue |
|- ( ( -. l = I \/ l = I ) -> if ( ( -. l = I \/ l = I ) , ( r M l ) , .0. ) = ( r M l ) ) |
109 |
107 108
|
mp1i |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> if ( ( -. l = I \/ l = I ) , ( r M l ) , .0. ) = ( r M l ) ) |
110 |
98 106 109
|
3eqtr2d |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ l e. N ) -> ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( r M l ) ) |
111 |
110
|
3adant2 |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( r M l ) ) |
112 |
|
oveq1 |
|- ( k = r -> ( k M l ) = ( r M l ) ) |
113 |
112
|
eqeq2d |
|- ( k = r -> ( ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( k M l ) <-> ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( r M l ) ) ) |
114 |
111 113
|
syl5ibrcom |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> ( k = r -> ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( k M l ) ) ) |
115 |
114
|
imp |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) = ( k M l ) ) |
116 |
|
iftrue |
|- ( k = r -> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) ) |
117 |
116
|
adantl |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) ) |
118 |
79
|
neneqd |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> -. r = H ) |
119 |
118
|
3ad2ant1 |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> -. r = H ) |
120 |
|
eqeq1 |
|- ( k = r -> ( k = H <-> r = H ) ) |
121 |
120
|
notbid |
|- ( k = r -> ( -. k = H <-> -. r = H ) ) |
122 |
119 121
|
syl5ibrcom |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> ( k = r -> -. k = H ) ) |
123 |
122
|
imp |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> -. k = H ) |
124 |
123
|
iffalsed |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
125 |
|
eldifn |
|- ( r e. ( ( N \ { H } ) \ n ) -> -. r e. n ) |
126 |
125
|
ad2antll |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> -. r e. n ) |
127 |
126
|
3ad2ant1 |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> -. r e. n ) |
128 |
|
eleq1w |
|- ( k = r -> ( k e. n <-> r e. n ) ) |
129 |
128
|
notbid |
|- ( k = r -> ( -. k e. n <-> -. r e. n ) ) |
130 |
127 129
|
syl5ibrcom |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> ( k = r -> -. k e. n ) ) |
131 |
130
|
imp |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> -. k e. n ) |
132 |
131
|
iffalsed |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = ( k M l ) ) |
133 |
124 132
|
eqtrd |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = ( k M l ) ) |
134 |
115 117 133
|
3eqtr4d |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ k = r ) -> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
135 |
|
iffalse |
|- ( -. k = r -> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
136 |
135
|
adantl |
|- ( ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) /\ -. k = r ) -> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
137 |
134 136
|
pm2.61dan |
|- ( ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) /\ k e. N /\ l e. N ) -> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
138 |
137
|
mpoeq3dva |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( k e. N , l e. N |-> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) |
139 |
138
|
fveq2d |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( D ` ( k e. N , l e. N |-> if ( k = r , ( if ( l = I , .0. , ( r M l ) ) ( +g ` R ) ( ( r M I ) ( .r ` R ) if ( l = I , .1. , .0. ) ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) |
140 |
|
neeq2 |
|- ( k = H -> ( r =/= k <-> r =/= H ) ) |
141 |
140
|
biimparc |
|- ( ( r =/= H /\ k = H ) -> r =/= k ) |
142 |
141
|
necomd |
|- ( ( r =/= H /\ k = H ) -> k =/= r ) |
143 |
142
|
neneqd |
|- ( ( r =/= H /\ k = H ) -> -. k = r ) |
144 |
143
|
iffalsed |
|- ( ( r =/= H /\ k = H ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( l = I , .1. , .0. ) ) = if ( l = I , .1. , .0. ) ) |
145 |
|
iftrue |
|- ( k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( l = I , .1. , .0. ) ) |
146 |
145
|
adantl |
|- ( ( r =/= H /\ k = H ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( l = I , .1. , .0. ) ) |
147 |
146
|
ifeq2d |
|- ( ( r =/= H /\ k = H ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( l = I , .1. , .0. ) ) ) |
148 |
|
iftrue |
|- ( k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( l = I , .1. , .0. ) ) |
149 |
148
|
adantl |
|- ( ( r =/= H /\ k = H ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( l = I , .1. , .0. ) ) |
150 |
144 147 149
|
3eqtr4d |
|- ( ( r =/= H /\ k = H ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
151 |
112
|
ifeq2d |
|- ( k = r -> if ( l = I , .0. , ( k M l ) ) = if ( l = I , .0. , ( r M l ) ) ) |
152 |
|
vsnid |
|- r e. { r } |
153 |
|
elun2 |
|- ( r e. { r } -> r e. ( n u. { r } ) ) |
154 |
152 153
|
ax-mp |
|- r e. ( n u. { r } ) |
155 |
|
eleq1w |
|- ( k = r -> ( k e. ( n u. { r } ) <-> r e. ( n u. { r } ) ) ) |
156 |
154 155
|
mpbiri |
|- ( k = r -> k e. ( n u. { r } ) ) |
157 |
156
|
iftrued |
|- ( k = r -> if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( l = I , .0. , ( k M l ) ) ) |
158 |
|
iftrue |
|- ( k = r -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( l = I , .0. , ( r M l ) ) ) |
159 |
151 157 158
|
3eqtr4rd |
|- ( k = r -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
160 |
159
|
adantl |
|- ( ( ( r =/= H /\ -. k = H ) /\ k = r ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
161 |
|
iffalse |
|- ( -. k = r -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
162 |
|
orc |
|- ( k e. n -> ( k e. n \/ k = r ) ) |
163 |
|
orel2 |
|- ( -. k = r -> ( ( k e. n \/ k = r ) -> k e. n ) ) |
164 |
162 163
|
impbid2 |
|- ( -. k = r -> ( k e. n <-> ( k e. n \/ k = r ) ) ) |
165 |
|
elun |
|- ( k e. ( n u. { r } ) <-> ( k e. n \/ k e. { r } ) ) |
166 |
|
velsn |
|- ( k e. { r } <-> k = r ) |
167 |
166
|
orbi2i |
|- ( ( k e. n \/ k e. { r } ) <-> ( k e. n \/ k = r ) ) |
168 |
165 167
|
bitr2i |
|- ( ( k e. n \/ k = r ) <-> k e. ( n u. { r } ) ) |
169 |
164 168
|
bitrdi |
|- ( -. k = r -> ( k e. n <-> k e. ( n u. { r } ) ) ) |
170 |
169
|
ifbid |
|- ( -. k = r -> if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
171 |
161 170
|
eqtrd |
|- ( -. k = r -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
172 |
171
|
adantl |
|- ( ( ( r =/= H /\ -. k = H ) /\ -. k = r ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
173 |
160 172
|
pm2.61dan |
|- ( ( r =/= H /\ -. k = H ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
174 |
|
iffalse |
|- ( -. k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
175 |
174
|
ifeq2d |
|- ( -. k = H -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
176 |
175
|
adantl |
|- ( ( r =/= H /\ -. k = H ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
177 |
|
iffalse |
|- ( -. k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
178 |
177
|
adantl |
|- ( ( r =/= H /\ -. k = H ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
179 |
173 176 178
|
3eqtr4d |
|- ( ( r =/= H /\ -. k = H ) -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
180 |
150 179
|
pm2.61dan |
|- ( r =/= H -> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) |
181 |
180
|
mpoeq3dv |
|- ( r =/= H -> ( k e. N , l e. N |-> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) |
182 |
181
|
fveq2d |
|- ( r =/= H -> ( D ` ( k e. N , l e. N |-> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) |
183 |
79 182
|
syl |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( D ` ( k e. N , l e. N |-> if ( k = r , if ( l = I , .0. , ( r M l ) ) , if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) |
184 |
80 139 183
|
3eqtr3d |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) |
185 |
184
|
eqeq2d |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) <-> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) |
186 |
185
|
biimpd |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) /\ ( n C_ ( N \ { H } ) /\ r e. ( ( N \ { H } ) \ n ) ) ) -> ( ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. n , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) -> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( n u. { r } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) ) |
187 |
|
difss |
|- ( N \ { H } ) C_ N |
188 |
|
ssfi |
|- ( ( N e. Fin /\ ( N \ { H } ) C_ N ) -> ( N \ { H } ) e. Fin ) |
189 |
47 187 188
|
sylancl |
|- ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> ( N \ { H } ) e. Fin ) |
190 |
12 18 24 30 39 186 189
|
findcard2d |
|- ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) ) |
191 |
|
iba |
|- ( k = H -> ( l = I <-> ( l = I /\ k = H ) ) ) |
192 |
191
|
ifbid |
|- ( k = H -> if ( l = I , .1. , .0. ) = if ( ( l = I /\ k = H ) , .1. , .0. ) ) |
193 |
|
iftrue |
|- ( k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( l = I , .1. , .0. ) ) |
194 |
|
iftrue |
|- ( ( k = H \/ l = I ) -> if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) = if ( ( l = I /\ k = H ) , .1. , .0. ) ) |
195 |
194
|
orcs |
|- ( k = H -> if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) = if ( ( l = I /\ k = H ) , .1. , .0. ) ) |
196 |
192 193 195
|
3eqtr4d |
|- ( k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) |
197 |
196
|
adantl |
|- ( ( ( k e. N /\ l e. N ) /\ k = H ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) |
198 |
|
iffalse |
|- ( -. k = H -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
199 |
198
|
adantl |
|- ( ( ( k e. N /\ l e. N ) /\ -. k = H ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) |
200 |
|
neqne |
|- ( -. k = H -> k =/= H ) |
201 |
200
|
anim2i |
|- ( ( k e. N /\ -. k = H ) -> ( k e. N /\ k =/= H ) ) |
202 |
201
|
adantlr |
|- ( ( ( k e. N /\ l e. N ) /\ -. k = H ) -> ( k e. N /\ k =/= H ) ) |
203 |
|
eldifsn |
|- ( k e. ( N \ { H } ) <-> ( k e. N /\ k =/= H ) ) |
204 |
202 203
|
sylibr |
|- ( ( ( k e. N /\ l e. N ) /\ -. k = H ) -> k e. ( N \ { H } ) ) |
205 |
204
|
iftrued |
|- ( ( ( k e. N /\ l e. N ) /\ -. k = H ) -> if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) = if ( l = I , .0. , ( k M l ) ) ) |
206 |
|
biorf |
|- ( -. k = H -> ( l = I <-> ( k = H \/ l = I ) ) ) |
207 |
|
id |
|- ( -. k = H -> -. k = H ) |
208 |
207
|
intnand |
|- ( -. k = H -> -. ( l = I /\ k = H ) ) |
209 |
208
|
iffalsed |
|- ( -. k = H -> if ( ( l = I /\ k = H ) , .1. , .0. ) = .0. ) |
210 |
209
|
eqcomd |
|- ( -. k = H -> .0. = if ( ( l = I /\ k = H ) , .1. , .0. ) ) |
211 |
206 210
|
ifbieq1d |
|- ( -. k = H -> if ( l = I , .0. , ( k M l ) ) = if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) |
212 |
211
|
adantl |
|- ( ( ( k e. N /\ l e. N ) /\ -. k = H ) -> if ( l = I , .0. , ( k M l ) ) = if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) |
213 |
199 205 212
|
3eqtrd |
|- ( ( ( k e. N /\ l e. N ) /\ -. k = H ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) |
214 |
197 213
|
pm2.61dan |
|- ( ( k e. N /\ l e. N ) -> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) = if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) |
215 |
214
|
mpoeq3ia |
|- ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) = ( k e. N , l e. N |-> if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) |
216 |
215
|
fveq2i |
|- ( D ` ( k e. N , l e. N |-> if ( k = H , if ( l = I , .1. , .0. ) , if ( k e. ( N \ { H } ) , if ( l = I , .0. , ( k M l ) ) , ( k M l ) ) ) ) ) = ( D ` ( k e. N , l e. N |-> if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) ) |
217 |
190 216
|
eqtrdi |
|- ( ( ( R e. CRing /\ M e. B ) /\ I e. N /\ H e. N ) -> ( I ( J ` M ) H ) = ( D ` ( k e. N , l e. N |-> if ( ( k = H \/ l = I ) , if ( ( l = I /\ k = H ) , .1. , .0. ) , ( k M l ) ) ) ) ) |