| Step | Hyp | Ref | Expression | 
						
							| 1 |  | madurid.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | madurid.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | madurid.j |  |-  J = ( N maAdju R ) | 
						
							| 4 |  | madurid.d |  |-  D = ( N maDet R ) | 
						
							| 5 |  | madurid.i |  |-  .1. = ( 1r ` A ) | 
						
							| 6 |  | madurid.t |  |-  .x. = ( .r ` A ) | 
						
							| 7 |  | madurid.s |  |-  .xb = ( .s ` A ) | 
						
							| 8 |  | simpr |  |-  ( ( M e. B /\ R e. CRing ) -> R e. CRing ) | 
						
							| 9 | 1 3 2 | maduf |  |-  ( R e. CRing -> J : B --> B ) | 
						
							| 10 | 9 | ffvelcdmda |  |-  ( ( R e. CRing /\ M e. B ) -> ( J ` M ) e. B ) | 
						
							| 11 | 10 | ancoms |  |-  ( ( M e. B /\ R e. CRing ) -> ( J ` M ) e. B ) | 
						
							| 12 |  | simpl |  |-  ( ( M e. B /\ R e. CRing ) -> M e. B ) | 
						
							| 13 | 1 2 6 | mattposm |  |-  ( ( R e. CRing /\ ( J ` M ) e. B /\ M e. B ) -> tpos ( ( J ` M ) .x. M ) = ( tpos M .x. tpos ( J ` M ) ) ) | 
						
							| 14 | 8 11 12 13 | syl3anc |  |-  ( ( M e. B /\ R e. CRing ) -> tpos ( ( J ` M ) .x. M ) = ( tpos M .x. tpos ( J ` M ) ) ) | 
						
							| 15 | 1 3 2 | madutpos |  |-  ( ( R e. CRing /\ M e. B ) -> ( J ` tpos M ) = tpos ( J ` M ) ) | 
						
							| 16 | 15 | ancoms |  |-  ( ( M e. B /\ R e. CRing ) -> ( J ` tpos M ) = tpos ( J ` M ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( ( M e. B /\ R e. CRing ) -> ( tpos M .x. ( J ` tpos M ) ) = ( tpos M .x. tpos ( J ` M ) ) ) | 
						
							| 18 | 1 2 | mattposcl |  |-  ( M e. B -> tpos M e. B ) | 
						
							| 19 | 1 2 3 4 5 6 7 | madurid |  |-  ( ( tpos M e. B /\ R e. CRing ) -> ( tpos M .x. ( J ` tpos M ) ) = ( ( D ` tpos M ) .xb .1. ) ) | 
						
							| 20 | 18 19 | sylan |  |-  ( ( M e. B /\ R e. CRing ) -> ( tpos M .x. ( J ` tpos M ) ) = ( ( D ` tpos M ) .xb .1. ) ) | 
						
							| 21 | 14 17 20 | 3eqtr2d |  |-  ( ( M e. B /\ R e. CRing ) -> tpos ( ( J ` M ) .x. M ) = ( ( D ` tpos M ) .xb .1. ) ) | 
						
							| 22 | 21 | tposeqd |  |-  ( ( M e. B /\ R e. CRing ) -> tpos tpos ( ( J ` M ) .x. M ) = tpos ( ( D ` tpos M ) .xb .1. ) ) | 
						
							| 23 | 1 2 | matrcl |  |-  ( M e. B -> ( N e. Fin /\ R e. _V ) ) | 
						
							| 24 | 23 | simpld |  |-  ( M e. B -> N e. Fin ) | 
						
							| 25 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 26 | 1 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 27 | 24 25 26 | syl2an |  |-  ( ( M e. B /\ R e. CRing ) -> A e. Ring ) | 
						
							| 28 | 2 6 | ringcl |  |-  ( ( A e. Ring /\ ( J ` M ) e. B /\ M e. B ) -> ( ( J ` M ) .x. M ) e. B ) | 
						
							| 29 | 27 11 12 28 | syl3anc |  |-  ( ( M e. B /\ R e. CRing ) -> ( ( J ` M ) .x. M ) e. B ) | 
						
							| 30 | 1 2 | mattpostpos |  |-  ( ( ( J ` M ) .x. M ) e. B -> tpos tpos ( ( J ` M ) .x. M ) = ( ( J ` M ) .x. M ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( M e. B /\ R e. CRing ) -> tpos tpos ( ( J ` M ) .x. M ) = ( ( J ` M ) .x. M ) ) | 
						
							| 32 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 33 | 4 1 2 32 | mdetf |  |-  ( R e. CRing -> D : B --> ( Base ` R ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( M e. B /\ R e. CRing ) -> D : B --> ( Base ` R ) ) | 
						
							| 35 | 18 | adantr |  |-  ( ( M e. B /\ R e. CRing ) -> tpos M e. B ) | 
						
							| 36 | 34 35 | ffvelcdmd |  |-  ( ( M e. B /\ R e. CRing ) -> ( D ` tpos M ) e. ( Base ` R ) ) | 
						
							| 37 | 2 5 | ringidcl |  |-  ( A e. Ring -> .1. e. B ) | 
						
							| 38 | 27 37 | syl |  |-  ( ( M e. B /\ R e. CRing ) -> .1. e. B ) | 
						
							| 39 | 1 2 32 7 | mattposvs |  |-  ( ( ( D ` tpos M ) e. ( Base ` R ) /\ .1. e. B ) -> tpos ( ( D ` tpos M ) .xb .1. ) = ( ( D ` tpos M ) .xb tpos .1. ) ) | 
						
							| 40 | 36 38 39 | syl2anc |  |-  ( ( M e. B /\ R e. CRing ) -> tpos ( ( D ` tpos M ) .xb .1. ) = ( ( D ` tpos M ) .xb tpos .1. ) ) | 
						
							| 41 | 4 1 2 | mdettpos |  |-  ( ( R e. CRing /\ M e. B ) -> ( D ` tpos M ) = ( D ` M ) ) | 
						
							| 42 | 41 | ancoms |  |-  ( ( M e. B /\ R e. CRing ) -> ( D ` tpos M ) = ( D ` M ) ) | 
						
							| 43 | 1 5 | mattpos1 |  |-  ( ( N e. Fin /\ R e. Ring ) -> tpos .1. = .1. ) | 
						
							| 44 | 24 25 43 | syl2an |  |-  ( ( M e. B /\ R e. CRing ) -> tpos .1. = .1. ) | 
						
							| 45 | 42 44 | oveq12d |  |-  ( ( M e. B /\ R e. CRing ) -> ( ( D ` tpos M ) .xb tpos .1. ) = ( ( D ` M ) .xb .1. ) ) | 
						
							| 46 | 40 45 | eqtrd |  |-  ( ( M e. B /\ R e. CRing ) -> tpos ( ( D ` tpos M ) .xb .1. ) = ( ( D ` M ) .xb .1. ) ) | 
						
							| 47 | 22 31 46 | 3eqtr3d |  |-  ( ( M e. B /\ R e. CRing ) -> ( ( J ` M ) .x. M ) = ( ( D ` M ) .xb .1. ) ) |