Step |
Hyp |
Ref |
Expression |
1 |
|
madurid.a |
|- A = ( N Mat R ) |
2 |
|
madurid.b |
|- B = ( Base ` A ) |
3 |
|
madurid.j |
|- J = ( N maAdju R ) |
4 |
|
madurid.d |
|- D = ( N maDet R ) |
5 |
|
madurid.i |
|- .1. = ( 1r ` A ) |
6 |
|
madurid.t |
|- .x. = ( .r ` A ) |
7 |
|
madurid.s |
|- .xb = ( .s ` A ) |
8 |
|
simpr |
|- ( ( M e. B /\ R e. CRing ) -> R e. CRing ) |
9 |
1 3 2
|
maduf |
|- ( R e. CRing -> J : B --> B ) |
10 |
9
|
ffvelrnda |
|- ( ( R e. CRing /\ M e. B ) -> ( J ` M ) e. B ) |
11 |
10
|
ancoms |
|- ( ( M e. B /\ R e. CRing ) -> ( J ` M ) e. B ) |
12 |
|
simpl |
|- ( ( M e. B /\ R e. CRing ) -> M e. B ) |
13 |
1 2 6
|
mattposm |
|- ( ( R e. CRing /\ ( J ` M ) e. B /\ M e. B ) -> tpos ( ( J ` M ) .x. M ) = ( tpos M .x. tpos ( J ` M ) ) ) |
14 |
8 11 12 13
|
syl3anc |
|- ( ( M e. B /\ R e. CRing ) -> tpos ( ( J ` M ) .x. M ) = ( tpos M .x. tpos ( J ` M ) ) ) |
15 |
1 3 2
|
madutpos |
|- ( ( R e. CRing /\ M e. B ) -> ( J ` tpos M ) = tpos ( J ` M ) ) |
16 |
15
|
ancoms |
|- ( ( M e. B /\ R e. CRing ) -> ( J ` tpos M ) = tpos ( J ` M ) ) |
17 |
16
|
oveq2d |
|- ( ( M e. B /\ R e. CRing ) -> ( tpos M .x. ( J ` tpos M ) ) = ( tpos M .x. tpos ( J ` M ) ) ) |
18 |
1 2
|
mattposcl |
|- ( M e. B -> tpos M e. B ) |
19 |
1 2 3 4 5 6 7
|
madurid |
|- ( ( tpos M e. B /\ R e. CRing ) -> ( tpos M .x. ( J ` tpos M ) ) = ( ( D ` tpos M ) .xb .1. ) ) |
20 |
18 19
|
sylan |
|- ( ( M e. B /\ R e. CRing ) -> ( tpos M .x. ( J ` tpos M ) ) = ( ( D ` tpos M ) .xb .1. ) ) |
21 |
14 17 20
|
3eqtr2d |
|- ( ( M e. B /\ R e. CRing ) -> tpos ( ( J ` M ) .x. M ) = ( ( D ` tpos M ) .xb .1. ) ) |
22 |
21
|
tposeqd |
|- ( ( M e. B /\ R e. CRing ) -> tpos tpos ( ( J ` M ) .x. M ) = tpos ( ( D ` tpos M ) .xb .1. ) ) |
23 |
1 2
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
24 |
23
|
simpld |
|- ( M e. B -> N e. Fin ) |
25 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
26 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
27 |
24 25 26
|
syl2an |
|- ( ( M e. B /\ R e. CRing ) -> A e. Ring ) |
28 |
2 6
|
ringcl |
|- ( ( A e. Ring /\ ( J ` M ) e. B /\ M e. B ) -> ( ( J ` M ) .x. M ) e. B ) |
29 |
27 11 12 28
|
syl3anc |
|- ( ( M e. B /\ R e. CRing ) -> ( ( J ` M ) .x. M ) e. B ) |
30 |
1 2
|
mattpostpos |
|- ( ( ( J ` M ) .x. M ) e. B -> tpos tpos ( ( J ` M ) .x. M ) = ( ( J ` M ) .x. M ) ) |
31 |
29 30
|
syl |
|- ( ( M e. B /\ R e. CRing ) -> tpos tpos ( ( J ` M ) .x. M ) = ( ( J ` M ) .x. M ) ) |
32 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
33 |
4 1 2 32
|
mdetf |
|- ( R e. CRing -> D : B --> ( Base ` R ) ) |
34 |
33
|
adantl |
|- ( ( M e. B /\ R e. CRing ) -> D : B --> ( Base ` R ) ) |
35 |
18
|
adantr |
|- ( ( M e. B /\ R e. CRing ) -> tpos M e. B ) |
36 |
34 35
|
ffvelrnd |
|- ( ( M e. B /\ R e. CRing ) -> ( D ` tpos M ) e. ( Base ` R ) ) |
37 |
2 5
|
ringidcl |
|- ( A e. Ring -> .1. e. B ) |
38 |
27 37
|
syl |
|- ( ( M e. B /\ R e. CRing ) -> .1. e. B ) |
39 |
1 2 32 7
|
mattposvs |
|- ( ( ( D ` tpos M ) e. ( Base ` R ) /\ .1. e. B ) -> tpos ( ( D ` tpos M ) .xb .1. ) = ( ( D ` tpos M ) .xb tpos .1. ) ) |
40 |
36 38 39
|
syl2anc |
|- ( ( M e. B /\ R e. CRing ) -> tpos ( ( D ` tpos M ) .xb .1. ) = ( ( D ` tpos M ) .xb tpos .1. ) ) |
41 |
4 1 2
|
mdettpos |
|- ( ( R e. CRing /\ M e. B ) -> ( D ` tpos M ) = ( D ` M ) ) |
42 |
41
|
ancoms |
|- ( ( M e. B /\ R e. CRing ) -> ( D ` tpos M ) = ( D ` M ) ) |
43 |
1 5
|
mattpos1 |
|- ( ( N e. Fin /\ R e. Ring ) -> tpos .1. = .1. ) |
44 |
24 25 43
|
syl2an |
|- ( ( M e. B /\ R e. CRing ) -> tpos .1. = .1. ) |
45 |
42 44
|
oveq12d |
|- ( ( M e. B /\ R e. CRing ) -> ( ( D ` tpos M ) .xb tpos .1. ) = ( ( D ` M ) .xb .1. ) ) |
46 |
40 45
|
eqtrd |
|- ( ( M e. B /\ R e. CRing ) -> tpos ( ( D ` tpos M ) .xb .1. ) = ( ( D ` M ) .xb .1. ) ) |
47 |
22 31 46
|
3eqtr3d |
|- ( ( M e. B /\ R e. CRing ) -> ( ( J ` M ) .x. M ) = ( ( D ` M ) .xb .1. ) ) |