Step |
Hyp |
Ref |
Expression |
1 |
|
maduf.a |
|- A = ( N Mat R ) |
2 |
|
maduf.j |
|- J = ( N maAdju R ) |
3 |
|
maduf.b |
|- B = ( Base ` A ) |
4 |
|
eqid |
|- ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) = ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) |
5 |
4
|
tposmpo |
|- tpos ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) = ( c e. N , d e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) |
6 |
|
orcom |
|- ( ( d = a \/ c = b ) <-> ( c = b \/ d = a ) ) |
7 |
6
|
a1i |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> ( ( d = a \/ c = b ) <-> ( c = b \/ d = a ) ) ) |
8 |
|
ancom |
|- ( ( c = b /\ d = a ) <-> ( d = a /\ c = b ) ) |
9 |
8
|
a1i |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> ( ( c = b /\ d = a ) <-> ( d = a /\ c = b ) ) ) |
10 |
9
|
ifbid |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) = if ( ( d = a /\ c = b ) , ( 1r ` R ) , ( 0g ` R ) ) ) |
11 |
|
ovtpos |
|- ( c tpos M d ) = ( d M c ) |
12 |
11
|
eqcomi |
|- ( d M c ) = ( c tpos M d ) |
13 |
12
|
a1i |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> ( d M c ) = ( c tpos M d ) ) |
14 |
7 10 13
|
ifbieq12d |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) = if ( ( c = b \/ d = a ) , if ( ( d = a /\ c = b ) , ( 1r ` R ) , ( 0g ` R ) ) , ( c tpos M d ) ) ) |
15 |
14
|
mpoeq3dv |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> ( c e. N , d e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) = ( c e. N , d e. N |-> if ( ( c = b \/ d = a ) , if ( ( d = a /\ c = b ) , ( 1r ` R ) , ( 0g ` R ) ) , ( c tpos M d ) ) ) ) |
16 |
5 15
|
syl5eq |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> tpos ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) = ( c e. N , d e. N |-> if ( ( c = b \/ d = a ) , if ( ( d = a /\ c = b ) , ( 1r ` R ) , ( 0g ` R ) ) , ( c tpos M d ) ) ) ) |
17 |
16
|
fveq2d |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> ( ( N maDet R ) ` tpos ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) ) = ( ( N maDet R ) ` ( c e. N , d e. N |-> if ( ( c = b \/ d = a ) , if ( ( d = a /\ c = b ) , ( 1r ` R ) , ( 0g ` R ) ) , ( c tpos M d ) ) ) ) ) |
18 |
|
simpll |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> R e. CRing ) |
19 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
20 |
1 3
|
matrcl |
|- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
21 |
20
|
simpld |
|- ( M e. B -> N e. Fin ) |
22 |
21
|
ad2antlr |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> N e. Fin ) |
23 |
|
simp1ll |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) /\ d e. N /\ c e. N ) -> R e. CRing ) |
24 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
25 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
26 |
19 25
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
27 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
28 |
19 27
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
29 |
26 28
|
ifcld |
|- ( R e. Ring -> if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` R ) ) |
30 |
23 24 29
|
3syl |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) /\ d e. N /\ c e. N ) -> if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` R ) ) |
31 |
1 19 3
|
matbas2i |
|- ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
32 |
|
elmapi |
|- ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
33 |
31 32
|
syl |
|- ( M e. B -> M : ( N X. N ) --> ( Base ` R ) ) |
34 |
33
|
ad2antlr |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
35 |
34
|
fovrnda |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) /\ ( d e. N /\ c e. N ) ) -> ( d M c ) e. ( Base ` R ) ) |
36 |
35
|
3impb |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) /\ d e. N /\ c e. N ) -> ( d M c ) e. ( Base ` R ) ) |
37 |
30 36
|
ifcld |
|- ( ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) /\ d e. N /\ c e. N ) -> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) e. ( Base ` R ) ) |
38 |
1 19 3 22 18 37
|
matbas2d |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) e. B ) |
39 |
|
eqid |
|- ( N maDet R ) = ( N maDet R ) |
40 |
39 1 3
|
mdettpos |
|- ( ( R e. CRing /\ ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) e. B ) -> ( ( N maDet R ) ` tpos ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) ) = ( ( N maDet R ) ` ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) ) ) |
41 |
18 38 40
|
syl2anc |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> ( ( N maDet R ) ` tpos ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) ) = ( ( N maDet R ) ` ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) ) ) |
42 |
17 41
|
eqtr3d |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> ( ( N maDet R ) ` ( c e. N , d e. N |-> if ( ( c = b \/ d = a ) , if ( ( d = a /\ c = b ) , ( 1r ` R ) , ( 0g ` R ) ) , ( c tpos M d ) ) ) ) = ( ( N maDet R ) ` ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) ) ) |
43 |
1 3
|
mattposcl |
|- ( M e. B -> tpos M e. B ) |
44 |
43
|
adantl |
|- ( ( R e. CRing /\ M e. B ) -> tpos M e. B ) |
45 |
44
|
adantr |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> tpos M e. B ) |
46 |
|
simprl |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> a e. N ) |
47 |
|
simprr |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> b e. N ) |
48 |
1 39 2 3 25 27
|
maducoeval2 |
|- ( ( ( R e. CRing /\ tpos M e. B ) /\ a e. N /\ b e. N ) -> ( a ( J ` tpos M ) b ) = ( ( N maDet R ) ` ( c e. N , d e. N |-> if ( ( c = b \/ d = a ) , if ( ( d = a /\ c = b ) , ( 1r ` R ) , ( 0g ` R ) ) , ( c tpos M d ) ) ) ) ) |
49 |
18 45 46 47 48
|
syl211anc |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> ( a ( J ` tpos M ) b ) = ( ( N maDet R ) ` ( c e. N , d e. N |-> if ( ( c = b \/ d = a ) , if ( ( d = a /\ c = b ) , ( 1r ` R ) , ( 0g ` R ) ) , ( c tpos M d ) ) ) ) ) |
50 |
|
simplr |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> M e. B ) |
51 |
1 39 2 3 25 27
|
maducoeval2 |
|- ( ( ( R e. CRing /\ M e. B ) /\ b e. N /\ a e. N ) -> ( b ( J ` M ) a ) = ( ( N maDet R ) ` ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) ) ) |
52 |
18 50 47 46 51
|
syl211anc |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> ( b ( J ` M ) a ) = ( ( N maDet R ) ` ( d e. N , c e. N |-> if ( ( d = a \/ c = b ) , if ( ( c = b /\ d = a ) , ( 1r ` R ) , ( 0g ` R ) ) , ( d M c ) ) ) ) ) |
53 |
42 49 52
|
3eqtr4d |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> ( a ( J ` tpos M ) b ) = ( b ( J ` M ) a ) ) |
54 |
|
ovtpos |
|- ( a tpos ( J ` M ) b ) = ( b ( J ` M ) a ) |
55 |
53 54
|
eqtr4di |
|- ( ( ( R e. CRing /\ M e. B ) /\ ( a e. N /\ b e. N ) ) -> ( a ( J ` tpos M ) b ) = ( a tpos ( J ` M ) b ) ) |
56 |
55
|
ralrimivva |
|- ( ( R e. CRing /\ M e. B ) -> A. a e. N A. b e. N ( a ( J ` tpos M ) b ) = ( a tpos ( J ` M ) b ) ) |
57 |
1 2 3
|
maduf |
|- ( R e. CRing -> J : B --> B ) |
58 |
57
|
adantr |
|- ( ( R e. CRing /\ M e. B ) -> J : B --> B ) |
59 |
58 44
|
ffvelrnd |
|- ( ( R e. CRing /\ M e. B ) -> ( J ` tpos M ) e. B ) |
60 |
1 19 3
|
matbas2i |
|- ( ( J ` tpos M ) e. B -> ( J ` tpos M ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
61 |
59 60
|
syl |
|- ( ( R e. CRing /\ M e. B ) -> ( J ` tpos M ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
62 |
|
elmapi |
|- ( ( J ` tpos M ) e. ( ( Base ` R ) ^m ( N X. N ) ) -> ( J ` tpos M ) : ( N X. N ) --> ( Base ` R ) ) |
63 |
|
ffn |
|- ( ( J ` tpos M ) : ( N X. N ) --> ( Base ` R ) -> ( J ` tpos M ) Fn ( N X. N ) ) |
64 |
61 62 63
|
3syl |
|- ( ( R e. CRing /\ M e. B ) -> ( J ` tpos M ) Fn ( N X. N ) ) |
65 |
57
|
ffvelrnda |
|- ( ( R e. CRing /\ M e. B ) -> ( J ` M ) e. B ) |
66 |
1 3
|
mattposcl |
|- ( ( J ` M ) e. B -> tpos ( J ` M ) e. B ) |
67 |
1 19 3
|
matbas2i |
|- ( tpos ( J ` M ) e. B -> tpos ( J ` M ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
68 |
65 66 67
|
3syl |
|- ( ( R e. CRing /\ M e. B ) -> tpos ( J ` M ) e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
69 |
|
elmapi |
|- ( tpos ( J ` M ) e. ( ( Base ` R ) ^m ( N X. N ) ) -> tpos ( J ` M ) : ( N X. N ) --> ( Base ` R ) ) |
70 |
|
ffn |
|- ( tpos ( J ` M ) : ( N X. N ) --> ( Base ` R ) -> tpos ( J ` M ) Fn ( N X. N ) ) |
71 |
68 69 70
|
3syl |
|- ( ( R e. CRing /\ M e. B ) -> tpos ( J ` M ) Fn ( N X. N ) ) |
72 |
|
eqfnov2 |
|- ( ( ( J ` tpos M ) Fn ( N X. N ) /\ tpos ( J ` M ) Fn ( N X. N ) ) -> ( ( J ` tpos M ) = tpos ( J ` M ) <-> A. a e. N A. b e. N ( a ( J ` tpos M ) b ) = ( a tpos ( J ` M ) b ) ) ) |
73 |
64 71 72
|
syl2anc |
|- ( ( R e. CRing /\ M e. B ) -> ( ( J ` tpos M ) = tpos ( J ` M ) <-> A. a e. N A. b e. N ( a ( J ` tpos M ) b ) = ( a tpos ( J ` M ) b ) ) ) |
74 |
56 73
|
mpbird |
|- ( ( R e. CRing /\ M e. B ) -> ( J ` tpos M ) = tpos ( J ` M ) ) |