| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mamufval.f |  |-  F = ( R maMul <. M , N , P >. ) | 
						
							| 2 |  | mamufval.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | mamufval.t |  |-  .x. = ( .r ` R ) | 
						
							| 4 |  | mamufval.r |  |-  ( ph -> R e. V ) | 
						
							| 5 |  | mamufval.m |  |-  ( ph -> M e. Fin ) | 
						
							| 6 |  | mamufval.n |  |-  ( ph -> N e. Fin ) | 
						
							| 7 |  | mamufval.p |  |-  ( ph -> P e. Fin ) | 
						
							| 8 |  | mamuval.x |  |-  ( ph -> X e. ( B ^m ( M X. N ) ) ) | 
						
							| 9 |  | mamuval.y |  |-  ( ph -> Y e. ( B ^m ( N X. P ) ) ) | 
						
							| 10 |  | mamufv.i |  |-  ( ph -> I e. M ) | 
						
							| 11 |  | mamufv.k |  |-  ( ph -> K e. P ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 | mamuval |  |-  ( ph -> ( X F Y ) = ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i X j ) .x. ( j Y k ) ) ) ) ) ) | 
						
							| 13 |  | oveq1 |  |-  ( i = I -> ( i X j ) = ( I X j ) ) | 
						
							| 14 |  | oveq2 |  |-  ( k = K -> ( j Y k ) = ( j Y K ) ) | 
						
							| 15 | 13 14 | oveqan12d |  |-  ( ( i = I /\ k = K ) -> ( ( i X j ) .x. ( j Y k ) ) = ( ( I X j ) .x. ( j Y K ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ph /\ ( i = I /\ k = K ) ) -> ( ( i X j ) .x. ( j Y k ) ) = ( ( I X j ) .x. ( j Y K ) ) ) | 
						
							| 17 | 16 | mpteq2dv |  |-  ( ( ph /\ ( i = I /\ k = K ) ) -> ( j e. N |-> ( ( i X j ) .x. ( j Y k ) ) ) = ( j e. N |-> ( ( I X j ) .x. ( j Y K ) ) ) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( ( ph /\ ( i = I /\ k = K ) ) -> ( R gsum ( j e. N |-> ( ( i X j ) .x. ( j Y k ) ) ) ) = ( R gsum ( j e. N |-> ( ( I X j ) .x. ( j Y K ) ) ) ) ) | 
						
							| 19 |  | ovexd |  |-  ( ph -> ( R gsum ( j e. N |-> ( ( I X j ) .x. ( j Y K ) ) ) ) e. _V ) | 
						
							| 20 | 12 18 10 11 19 | ovmpod |  |-  ( ph -> ( I ( X F Y ) K ) = ( R gsum ( j e. N |-> ( ( I X j ) .x. ( j Y K ) ) ) ) ) |