| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mamufval.f |
|- F = ( R maMul <. M , N , P >. ) |
| 2 |
|
mamufval.b |
|- B = ( Base ` R ) |
| 3 |
|
mamufval.t |
|- .x. = ( .r ` R ) |
| 4 |
|
mamufval.r |
|- ( ph -> R e. V ) |
| 5 |
|
mamufval.m |
|- ( ph -> M e. Fin ) |
| 6 |
|
mamufval.n |
|- ( ph -> N e. Fin ) |
| 7 |
|
mamufval.p |
|- ( ph -> P e. Fin ) |
| 8 |
|
df-mamu |
|- maMul = ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |
| 9 |
8
|
a1i |
|- ( ph -> maMul = ( r e. _V , o e. _V |-> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) ) |
| 10 |
|
fvex |
|- ( 1st ` ( 1st ` o ) ) e. _V |
| 11 |
|
fvex |
|- ( 2nd ` ( 1st ` o ) ) e. _V |
| 12 |
|
fvex |
|- ( 2nd ` o ) e. _V |
| 13 |
|
eqidd |
|- ( p = ( 2nd ` o ) -> ( ( Base ` r ) ^m ( m X. n ) ) = ( ( Base ` r ) ^m ( m X. n ) ) ) |
| 14 |
|
xpeq2 |
|- ( p = ( 2nd ` o ) -> ( n X. p ) = ( n X. ( 2nd ` o ) ) ) |
| 15 |
14
|
oveq2d |
|- ( p = ( 2nd ` o ) -> ( ( Base ` r ) ^m ( n X. p ) ) = ( ( Base ` r ) ^m ( n X. ( 2nd ` o ) ) ) ) |
| 16 |
|
eqidd |
|- ( p = ( 2nd ` o ) -> m = m ) |
| 17 |
|
id |
|- ( p = ( 2nd ` o ) -> p = ( 2nd ` o ) ) |
| 18 |
|
eqidd |
|- ( p = ( 2nd ` o ) -> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) = ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) |
| 19 |
16 17 18
|
mpoeq123dv |
|- ( p = ( 2nd ` o ) -> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) = ( i e. m , k e. ( 2nd ` o ) |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 20 |
13 15 19
|
mpoeq123dv |
|- ( p = ( 2nd ` o ) -> ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. ( 2nd ` o ) ) ) |-> ( i e. m , k e. ( 2nd ` o ) |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |
| 21 |
12 20
|
csbie |
|- [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. ( 2nd ` o ) ) ) |-> ( i e. m , k e. ( 2nd ` o ) |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 22 |
|
xpeq12 |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( m X. n ) = ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) |
| 23 |
22
|
oveq2d |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( ( Base ` r ) ^m ( m X. n ) ) = ( ( Base ` r ) ^m ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) ) |
| 24 |
|
simpr |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> n = ( 2nd ` ( 1st ` o ) ) ) |
| 25 |
24
|
xpeq1d |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( n X. ( 2nd ` o ) ) = ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) |
| 26 |
25
|
oveq2d |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( ( Base ` r ) ^m ( n X. ( 2nd ` o ) ) ) = ( ( Base ` r ) ^m ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) ) |
| 27 |
|
id |
|- ( m = ( 1st ` ( 1st ` o ) ) -> m = ( 1st ` ( 1st ` o ) ) ) |
| 28 |
27
|
adantr |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> m = ( 1st ` ( 1st ` o ) ) ) |
| 29 |
|
eqidd |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( 2nd ` o ) = ( 2nd ` o ) ) |
| 30 |
|
eqidd |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( ( i x j ) ( .r ` r ) ( j y k ) ) = ( ( i x j ) ( .r ` r ) ( j y k ) ) ) |
| 31 |
24 30
|
mpteq12dv |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) = ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) |
| 32 |
31
|
oveq2d |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) = ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) |
| 33 |
28 29 32
|
mpoeq123dv |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( i e. m , k e. ( 2nd ` o ) |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) = ( i e. ( 1st ` ( 1st ` o ) ) , k e. ( 2nd ` o ) |-> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 34 |
23 26 33
|
mpoeq123dv |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. ( 2nd ` o ) ) ) |-> ( i e. m , k e. ( 2nd ` o ) |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( ( Base ` r ) ^m ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) , y e. ( ( Base ` r ) ^m ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) |-> ( i e. ( 1st ` ( 1st ` o ) ) , k e. ( 2nd ` o ) |-> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |
| 35 |
21 34
|
eqtrid |
|- ( ( m = ( 1st ` ( 1st ` o ) ) /\ n = ( 2nd ` ( 1st ` o ) ) ) -> [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( ( Base ` r ) ^m ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) , y e. ( ( Base ` r ) ^m ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) |-> ( i e. ( 1st ` ( 1st ` o ) ) , k e. ( 2nd ` o ) |-> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) ) |
| 36 |
10 11 35
|
csbie2 |
|- [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( ( Base ` r ) ^m ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) , y e. ( ( Base ` r ) ^m ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) |-> ( i e. ( 1st ` ( 1st ` o ) ) , k e. ( 2nd ` o ) |-> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) |
| 37 |
|
simprl |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> r = R ) |
| 38 |
37
|
fveq2d |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( Base ` r ) = ( Base ` R ) ) |
| 39 |
38 2
|
eqtr4di |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( Base ` r ) = B ) |
| 40 |
|
fveq2 |
|- ( o = <. M , N , P >. -> ( 1st ` o ) = ( 1st ` <. M , N , P >. ) ) |
| 41 |
40
|
fveq2d |
|- ( o = <. M , N , P >. -> ( 1st ` ( 1st ` o ) ) = ( 1st ` ( 1st ` <. M , N , P >. ) ) ) |
| 42 |
41
|
ad2antll |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 1st ` ( 1st ` o ) ) = ( 1st ` ( 1st ` <. M , N , P >. ) ) ) |
| 43 |
|
ot1stg |
|- ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) -> ( 1st ` ( 1st ` <. M , N , P >. ) ) = M ) |
| 44 |
5 6 7 43
|
syl3anc |
|- ( ph -> ( 1st ` ( 1st ` <. M , N , P >. ) ) = M ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 1st ` ( 1st ` <. M , N , P >. ) ) = M ) |
| 46 |
42 45
|
eqtrd |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 1st ` ( 1st ` o ) ) = M ) |
| 47 |
40
|
fveq2d |
|- ( o = <. M , N , P >. -> ( 2nd ` ( 1st ` o ) ) = ( 2nd ` ( 1st ` <. M , N , P >. ) ) ) |
| 48 |
47
|
ad2antll |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 2nd ` ( 1st ` o ) ) = ( 2nd ` ( 1st ` <. M , N , P >. ) ) ) |
| 49 |
|
ot2ndg |
|- ( ( M e. Fin /\ N e. Fin /\ P e. Fin ) -> ( 2nd ` ( 1st ` <. M , N , P >. ) ) = N ) |
| 50 |
5 6 7 49
|
syl3anc |
|- ( ph -> ( 2nd ` ( 1st ` <. M , N , P >. ) ) = N ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 2nd ` ( 1st ` <. M , N , P >. ) ) = N ) |
| 52 |
48 51
|
eqtrd |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 2nd ` ( 1st ` o ) ) = N ) |
| 53 |
46 52
|
xpeq12d |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) = ( M X. N ) ) |
| 54 |
39 53
|
oveq12d |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( ( Base ` r ) ^m ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) = ( B ^m ( M X. N ) ) ) |
| 55 |
|
fveq2 |
|- ( o = <. M , N , P >. -> ( 2nd ` o ) = ( 2nd ` <. M , N , P >. ) ) |
| 56 |
55
|
ad2antll |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 2nd ` o ) = ( 2nd ` <. M , N , P >. ) ) |
| 57 |
|
ot3rdg |
|- ( P e. Fin -> ( 2nd ` <. M , N , P >. ) = P ) |
| 58 |
7 57
|
syl |
|- ( ph -> ( 2nd ` <. M , N , P >. ) = P ) |
| 59 |
58
|
adantr |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 2nd ` <. M , N , P >. ) = P ) |
| 60 |
56 59
|
eqtrd |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( 2nd ` o ) = P ) |
| 61 |
52 60
|
xpeq12d |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) = ( N X. P ) ) |
| 62 |
39 61
|
oveq12d |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( ( Base ` r ) ^m ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) = ( B ^m ( N X. P ) ) ) |
| 63 |
37
|
fveq2d |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( .r ` r ) = ( .r ` R ) ) |
| 64 |
63 3
|
eqtr4di |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( .r ` r ) = .x. ) |
| 65 |
64
|
oveqd |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( ( i x j ) ( .r ` r ) ( j y k ) ) = ( ( i x j ) .x. ( j y k ) ) ) |
| 66 |
52 65
|
mpteq12dv |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) = ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) |
| 67 |
37 66
|
oveq12d |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) = ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) |
| 68 |
46 60 67
|
mpoeq123dv |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( i e. ( 1st ` ( 1st ` o ) ) , k e. ( 2nd ` o ) |-> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) = ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) |
| 69 |
54 62 68
|
mpoeq123dv |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> ( x e. ( ( Base ` r ) ^m ( ( 1st ` ( 1st ` o ) ) X. ( 2nd ` ( 1st ` o ) ) ) ) , y e. ( ( Base ` r ) ^m ( ( 2nd ` ( 1st ` o ) ) X. ( 2nd ` o ) ) ) |-> ( i e. ( 1st ` ( 1st ` o ) ) , k e. ( 2nd ` o ) |-> ( r gsum ( j e. ( 2nd ` ( 1st ` o ) ) |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) ) |
| 70 |
36 69
|
eqtrid |
|- ( ( ph /\ ( r = R /\ o = <. M , N , P >. ) ) -> [_ ( 1st ` ( 1st ` o ) ) / m ]_ [_ ( 2nd ` ( 1st ` o ) ) / n ]_ [_ ( 2nd ` o ) / p ]_ ( x e. ( ( Base ` r ) ^m ( m X. n ) ) , y e. ( ( Base ` r ) ^m ( n X. p ) ) |-> ( i e. m , k e. p |-> ( r gsum ( j e. n |-> ( ( i x j ) ( .r ` r ) ( j y k ) ) ) ) ) ) = ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) ) |
| 71 |
4
|
elexd |
|- ( ph -> R e. _V ) |
| 72 |
|
otex |
|- <. M , N , P >. e. _V |
| 73 |
72
|
a1i |
|- ( ph -> <. M , N , P >. e. _V ) |
| 74 |
|
ovex |
|- ( B ^m ( M X. N ) ) e. _V |
| 75 |
|
ovex |
|- ( B ^m ( N X. P ) ) e. _V |
| 76 |
74 75
|
mpoex |
|- ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) e. _V |
| 77 |
76
|
a1i |
|- ( ph -> ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) e. _V ) |
| 78 |
9 70 71 73 77
|
ovmpod |
|- ( ph -> ( R maMul <. M , N , P >. ) = ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) ) |
| 79 |
1 78
|
eqtrid |
|- ( ph -> F = ( x e. ( B ^m ( M X. N ) ) , y e. ( B ^m ( N X. P ) ) |-> ( i e. M , k e. P |-> ( R gsum ( j e. N |-> ( ( i x j ) .x. ( j y k ) ) ) ) ) ) ) |