| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mamumat1cl.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | mamumat1cl.r |  |-  ( ph -> R e. Ring ) | 
						
							| 3 |  | mamumat1cl.o |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | mamumat1cl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | mamumat1cl.i |  |-  I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) | 
						
							| 6 |  | mamumat1cl.m |  |-  ( ph -> M e. Fin ) | 
						
							| 7 |  | mamulid.n |  |-  ( ph -> N e. Fin ) | 
						
							| 8 |  | mamulid.f |  |-  F = ( R maMul <. M , M , N >. ) | 
						
							| 9 |  | mamulid.x |  |-  ( ph -> X e. ( B ^m ( M X. N ) ) ) | 
						
							| 10 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 11 | 2 | adantr |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> R e. Ring ) | 
						
							| 12 | 6 | adantr |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> M e. Fin ) | 
						
							| 13 | 7 | adantr |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> N e. Fin ) | 
						
							| 14 | 1 2 3 4 5 6 | mamumat1cl |  |-  ( ph -> I e. ( B ^m ( M X. M ) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> I e. ( B ^m ( M X. M ) ) ) | 
						
							| 16 | 9 | adantr |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> X e. ( B ^m ( M X. N ) ) ) | 
						
							| 17 |  | simprl |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> l e. M ) | 
						
							| 18 |  | simprr |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> k e. N ) | 
						
							| 19 | 8 1 10 11 12 12 13 15 16 17 18 | mamufv |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( l ( I F X ) k ) = ( R gsum ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ) ) | 
						
							| 20 |  | ringmnd |  |-  ( R e. Ring -> R e. Mnd ) | 
						
							| 21 | 11 20 | syl |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> R e. Mnd ) | 
						
							| 22 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> R e. Ring ) | 
						
							| 23 |  | elmapi |  |-  ( I e. ( B ^m ( M X. M ) ) -> I : ( M X. M ) --> B ) | 
						
							| 24 | 14 23 | syl |  |-  ( ph -> I : ( M X. M ) --> B ) | 
						
							| 25 | 24 | ad2antrr |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> I : ( M X. M ) --> B ) | 
						
							| 26 |  | simplrl |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> l e. M ) | 
						
							| 27 |  | simpr |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> m e. M ) | 
						
							| 28 | 25 26 27 | fovcdmd |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> ( l I m ) e. B ) | 
						
							| 29 |  | elmapi |  |-  ( X e. ( B ^m ( M X. N ) ) -> X : ( M X. N ) --> B ) | 
						
							| 30 | 9 29 | syl |  |-  ( ph -> X : ( M X. N ) --> B ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> X : ( M X. N ) --> B ) | 
						
							| 32 |  | simplrr |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> k e. N ) | 
						
							| 33 | 31 27 32 | fovcdmd |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> ( m X k ) e. B ) | 
						
							| 34 | 1 10 | ringcl |  |-  ( ( R e. Ring /\ ( l I m ) e. B /\ ( m X k ) e. B ) -> ( ( l I m ) ( .r ` R ) ( m X k ) ) e. B ) | 
						
							| 35 | 22 28 33 34 | syl3anc |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> ( ( l I m ) ( .r ` R ) ( m X k ) ) e. B ) | 
						
							| 36 | 35 | fmpttd |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) : M --> B ) | 
						
							| 37 | 26 | 3adant3 |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> l e. M ) | 
						
							| 38 |  | simp2 |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> m e. M ) | 
						
							| 39 | 1 2 3 4 5 6 | mat1comp |  |-  ( ( l e. M /\ m e. M ) -> ( l I m ) = if ( l = m , .1. , .0. ) ) | 
						
							| 40 |  | equcom |  |-  ( l = m <-> m = l ) | 
						
							| 41 | 40 | a1i |  |-  ( ( l e. M /\ m e. M ) -> ( l = m <-> m = l ) ) | 
						
							| 42 | 41 | ifbid |  |-  ( ( l e. M /\ m e. M ) -> if ( l = m , .1. , .0. ) = if ( m = l , .1. , .0. ) ) | 
						
							| 43 | 39 42 | eqtrd |  |-  ( ( l e. M /\ m e. M ) -> ( l I m ) = if ( m = l , .1. , .0. ) ) | 
						
							| 44 | 37 38 43 | syl2anc |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( l I m ) = if ( m = l , .1. , .0. ) ) | 
						
							| 45 |  | ifnefalse |  |-  ( m =/= l -> if ( m = l , .1. , .0. ) = .0. ) | 
						
							| 46 | 45 | 3ad2ant3 |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> if ( m = l , .1. , .0. ) = .0. ) | 
						
							| 47 | 44 46 | eqtrd |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( l I m ) = .0. ) | 
						
							| 48 | 47 | oveq1d |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( ( l I m ) ( .r ` R ) ( m X k ) ) = ( .0. ( .r ` R ) ( m X k ) ) ) | 
						
							| 49 | 1 10 4 | ringlz |  |-  ( ( R e. Ring /\ ( m X k ) e. B ) -> ( .0. ( .r ` R ) ( m X k ) ) = .0. ) | 
						
							| 50 | 22 33 49 | syl2anc |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> ( .0. ( .r ` R ) ( m X k ) ) = .0. ) | 
						
							| 51 | 50 | 3adant3 |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( .0. ( .r ` R ) ( m X k ) ) = .0. ) | 
						
							| 52 | 48 51 | eqtrd |  |-  ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( ( l I m ) ( .r ` R ) ( m X k ) ) = .0. ) | 
						
							| 53 | 52 12 | suppsssn |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) supp .0. ) C_ { l } ) | 
						
							| 54 | 1 4 21 12 17 36 53 | gsumpt |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( R gsum ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ) = ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ` l ) ) | 
						
							| 55 |  | oveq2 |  |-  ( m = l -> ( l I m ) = ( l I l ) ) | 
						
							| 56 |  | oveq1 |  |-  ( m = l -> ( m X k ) = ( l X k ) ) | 
						
							| 57 | 55 56 | oveq12d |  |-  ( m = l -> ( ( l I m ) ( .r ` R ) ( m X k ) ) = ( ( l I l ) ( .r ` R ) ( l X k ) ) ) | 
						
							| 58 |  | eqid |  |-  ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) = ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) | 
						
							| 59 |  | ovex |  |-  ( ( l I l ) ( .r ` R ) ( l X k ) ) e. _V | 
						
							| 60 | 57 58 59 | fvmpt |  |-  ( l e. M -> ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ` l ) = ( ( l I l ) ( .r ` R ) ( l X k ) ) ) | 
						
							| 61 | 60 | ad2antrl |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ` l ) = ( ( l I l ) ( .r ` R ) ( l X k ) ) ) | 
						
							| 62 |  | equequ1 |  |-  ( i = l -> ( i = j <-> l = j ) ) | 
						
							| 63 | 62 | ifbid |  |-  ( i = l -> if ( i = j , .1. , .0. ) = if ( l = j , .1. , .0. ) ) | 
						
							| 64 |  | equequ2 |  |-  ( j = l -> ( l = j <-> l = l ) ) | 
						
							| 65 | 64 | ifbid |  |-  ( j = l -> if ( l = j , .1. , .0. ) = if ( l = l , .1. , .0. ) ) | 
						
							| 66 |  | equid |  |-  l = l | 
						
							| 67 | 66 | iftruei |  |-  if ( l = l , .1. , .0. ) = .1. | 
						
							| 68 | 65 67 | eqtrdi |  |-  ( j = l -> if ( l = j , .1. , .0. ) = .1. ) | 
						
							| 69 | 3 | fvexi |  |-  .1. e. _V | 
						
							| 70 | 63 68 5 69 | ovmpo |  |-  ( ( l e. M /\ l e. M ) -> ( l I l ) = .1. ) | 
						
							| 71 | 70 | anidms |  |-  ( l e. M -> ( l I l ) = .1. ) | 
						
							| 72 | 71 | ad2antrl |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( l I l ) = .1. ) | 
						
							| 73 | 72 | oveq1d |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( ( l I l ) ( .r ` R ) ( l X k ) ) = ( .1. ( .r ` R ) ( l X k ) ) ) | 
						
							| 74 | 30 | fovcdmda |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( l X k ) e. B ) | 
						
							| 75 | 1 10 3 | ringlidm |  |-  ( ( R e. Ring /\ ( l X k ) e. B ) -> ( .1. ( .r ` R ) ( l X k ) ) = ( l X k ) ) | 
						
							| 76 | 11 74 75 | syl2anc |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( .1. ( .r ` R ) ( l X k ) ) = ( l X k ) ) | 
						
							| 77 | 61 73 76 | 3eqtrd |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ` l ) = ( l X k ) ) | 
						
							| 78 | 19 54 77 | 3eqtrd |  |-  ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( l ( I F X ) k ) = ( l X k ) ) | 
						
							| 79 | 78 | ralrimivva |  |-  ( ph -> A. l e. M A. k e. N ( l ( I F X ) k ) = ( l X k ) ) | 
						
							| 80 | 1 2 8 6 6 7 14 9 | mamucl |  |-  ( ph -> ( I F X ) e. ( B ^m ( M X. N ) ) ) | 
						
							| 81 |  | elmapi |  |-  ( ( I F X ) e. ( B ^m ( M X. N ) ) -> ( I F X ) : ( M X. N ) --> B ) | 
						
							| 82 | 80 81 | syl |  |-  ( ph -> ( I F X ) : ( M X. N ) --> B ) | 
						
							| 83 | 82 | ffnd |  |-  ( ph -> ( I F X ) Fn ( M X. N ) ) | 
						
							| 84 | 30 | ffnd |  |-  ( ph -> X Fn ( M X. N ) ) | 
						
							| 85 |  | eqfnov2 |  |-  ( ( ( I F X ) Fn ( M X. N ) /\ X Fn ( M X. N ) ) -> ( ( I F X ) = X <-> A. l e. M A. k e. N ( l ( I F X ) k ) = ( l X k ) ) ) | 
						
							| 86 | 83 84 85 | syl2anc |  |-  ( ph -> ( ( I F X ) = X <-> A. l e. M A. k e. N ( l ( I F X ) k ) = ( l X k ) ) ) | 
						
							| 87 | 79 86 | mpbird |  |-  ( ph -> ( I F X ) = X ) |